

 Navigation

 	
 index

 	
 next |

 	PyTables 3.3.0 documentation

Welcome to PyTables’ documentation!

PyTables is a package for managing hierarchical datasets and designed
to efficiently and easily cope with extremely large amounts of data.
You can download PyTables and use it for free. You can access documentation,
some examples of use and presentations here.

PyTables is built on top of the HDF5 library, using the Python language
and the NumPy package. It features an object-oriented interface that,
combined with C extensions for the performance-critical parts of the
code (generated using Cython), makes it a fast, yet extremely easy to
use tool for interactively browse, process and search very large amounts
of data. One important feature of PyTables is that it optimizes memory and
disk resources so that data takes much less space (specially if on-flight
compression is used) than other solutions such as relational or object
oriented databases.

You can also find more information by reading the PyTables FAQ.

PyTables development is a continuing effort and we are always looking for
more developers, testers, and users. If you are interested in being
involved with this project, please contact us via github [https://github.com/PyTables/PyTables] or the
mailing list [https://groups.google.com/group/pytables-users].

[image: NumFocus Sponsored Stamp]
 [http://www.numfocus.org]Since August 2015, PyTables is a NumFOCUS project [http://www.numfocus.org/open-source-projects.html], which means that
your donations are fiscally sponsored under the NumFOCUS umbrella. Please
consider donating to NumFOCUS.

Contents

	User’s Guide

	Cookbook

	FAQ

	Other Material

	Migrating from 2.x to 3.x

	Downloads

	Release Notes

	Project pointers

	Development

	Development Team

Helpful Links

	Index

	Search Page

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

PyTables User’s Guide

Hierarchical datasets in Python

	Authors:	Francesc Alted, Ivan Vilata, Scott Prater, Vicent Mas, Tom Hedley,
Antonio Valentino, Jeffrey Whitaker, Anthony Scopatz, Josh Moore

	Copyright:	© 2002, 2003, 2004 - Francesc Alted

© 2005, 2006, 2007 - Cárabos Coop. V.

© 2008, 2009, 2010 - Francesc Alted

© 2011-2015 - PyTables maintainers

Contents

	Introduction

	Installation

	Tutorials

	Library Reference

	Optimization tips

	filenode - simulating a filesystem with PyTables

	Supported data types in PyTables

	Condition Syntax

	PyTables parameter files

	Utilities

	PyTables File Format

	Bibliography

Copyright Notice and Statement for PyTables User’s Guide

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

a. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

b. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.

c. Neither the name of Francesc Alted nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables User’s Guide

Introduction

La sabiduría no vale la pena si no es posible servirse de ella para
inventar una nueva manera de preparar los garbanzos.

[Wisdom isn’t worth anything if you can’t use it to come up with a new
way to cook garbanzos.]

Gabriel García Márquez, A wise Catalan in “Cien años de soledad”

The goal of PyTables is to enable the end user to manipulate easily data
tables and array objects in a hierarchical structure. The foundation of
the underlying hierarchical data organization is the excellent HDF5 library
(see [HDGF1]).

It should be noted that this package is not intended to serve as a complete
wrapper for the entire HDF5 API, but only to provide a flexible, very
pythonic tool to deal with (arbitrarily) large amounts of data (typically
bigger than available memory) in tables and arrays organized in a
hierarchical and persistent disk storage structure.

A table is defined as a collection of records whose values are stored in
fixed-length fields. All records have the same structure and all values in
each field have the same data type. The terms fixed-length and strict
data types may seem to be a strange requirement for an interpreted language
like Python, but they serve a useful function if the goal is to save very
large quantities of data (such as is generated by many data acquisition
systems, Internet services or scientific applications, for example) in an
efficient manner that reduces demand on CPU time and I/O.

In order to emulate in Python records mapped to HDF5 C structs PyTables
implements a special class so as to easily define all its fields and other
properties. PyTables also provides a powerful interface to mine data in
tables. Records in tables are also known in the HDF5 naming scheme as
compound data types.

For example, you can define arbitrary tables in Python simply by declaring a
class with named fields and type information, such as in the following
example:

class Particle(IsDescription):
 name = StringCol(16) # 16-character String
 idnumber = Int64Col() # signed 64-bit integer
 ADCcount = UInt16Col() # unsigned short integer
 TDCcount = UInt8Col() # unsigned byte
 grid_i = Int32Col() # integer
 grid_j = Int32Col() # integer

 # A sub-structure (nested data-type)
 class Properties(IsDescription):
 pressure = Float32Col(shape=(2,3)) # 2-D float array (single-precision)
 energy = Float64Col(shape=(2,3,4)) # 3-D float array (double-precision)

You then pass this class to the table constructor, fill its rows with your
values, and save (arbitrarily large) collections of them to a file for
persistent storage. After that, the data can be retrieved and post-processed
quite easily with PyTables or even with another HDF5 application (in C,
Fortran, Java or whatever language that provides a library to interface with
HDF5).

Other important entities in PyTables are array objects, which are analogous
to tables with the difference that all of their components are homogeneous.
They come in different flavors, like generic (they provide a quick and fast
way to deal with for numerical arrays), enlargeable (arrays can be extended
along a single dimension) and variable length (each row in the array can
have a different number of elements).

The next section describes the most interesting capabilities of PyTables.

Main Features

PyTables takes advantage of the object orientation and introspection
capabilities offered by Python, the powerful data management features of
HDF5, and NumPy’s flexibility and Numexpr’s high-performance manipulation of
large sets of objects organized in a grid-like fashion to provide these
features:

	Support for table entities: You can tailor your data adding or deleting
records in your tables. Large numbers of rows (up to 2**63, much more than
will fit into memory) are supported as well.

	Multidimensional and nested table cells: You can declare a column to
consist of values having any number of dimensions besides scalars, which is
the only dimensionality allowed by the majority of relational databases.
You can even declare columns that are made of other columns (of different
types).

	Indexing support for columns of tables:
Very useful if you have large tables and you want to quickly look up for
values in columns satisfying some criteria.

	Support for numerical arrays:
NumPy (see [NUMPY]) arrays can be used as a useful
complement of tables to store homogeneous data.

	Enlargeable arrays: You can add new
elements to existing arrays on disk in any dimension you want (but only
one). Besides, you are able to access just a slice of your datasets by
using the powerful extended slicing mechanism, without need to load all
your complete dataset in memory.

	Variable length arrays: The number of elements in these arrays can vary
from row to row. This provides a lot of flexibility when dealing with
complex data.

	Supports a hierarchical data model:
Allows the user to clearly structure all data. PyTables builds up an
object tree in memory that replicates the underlying file data structure.
Access to objects in the file is achieved by walking through and
manipulating this object tree.
Besides, this object tree is built in a lazy way, for efficiency purposes.

	User defined metadata: Besides
supporting system metadata (like the number of rows of a table, shape,
flavor, etc.) the user may specify arbitrary metadata (as for example, room
temperature, or protocol for IP traffic that was collected) that complement
the meaning of actual data.

	Ability to read/modify generic HDF5 files: PyTables can access a wide
range of objects in generic HDF5 files, like compound type datasets (that
can be mapped to Table objects), homogeneous datasets (that can be mapped
to Array objects) or variable length record datasets (that can be mapped to
VLArray objects). Besides, if a dataset is not supported, it will be mapped
to a special UnImplemented class (see The UnImplemented class), that
will let the user see that the data is there, although it will be
unreachable (still, you will be able to access the attributes and some
metadata in the dataset). With that, PyTables probably can access and
modify most of the HDF5 files out there.

	Data compression: Supports data compression (using the Zlib, LZO,
bzip2 and Blosc compression libraries) out of the box. This is
important when you have repetitive data patterns and don’t want to spend
time searching for an optimized way to store them (saving you time spent
analyzing your data organization).

	High performance I/O: On modern systems storing large amounts of data,
tables and array objects can be read and written at a speed only limited by
the performance of the underlying I/O subsystem. Moreover, if your data is
compressible, even that limit is surmountable!

	Support of files bigger than 2 GB:
PyTables automatically inherits this capability from the underlying HDF5
library (assuming your platform supports the C long long integer, or, on
Windows, __int64).

	Architecture-independent: PyTables has been carefully coded (as HDF5
itself) with little-endian/big-endian byte ordering issues in mind. So, you
can write a file on a big-endian machine (like a Sparc or MIPS) and read it
on other little-endian machine (like an Intel or Alpha) without problems.
In addition, it has been tested successfully with 64 bit platforms
(Intel-64, AMD-64, PowerPC-G5, MIPS, UltraSparc) using code generated with
64 bit aware compilers.

The Object Tree

The hierarchical model of the underlying HDF5 library allows PyTables to
manage tables and arrays in a tree-like structure. In order to achieve this,
an object tree entity is dynamically created imitating the HDF5 structure
on disk. The HDF5 objects are read by walking through this object tree. You
can get a good picture of what kind of data is kept in the object by
examining the metadata nodes.

The different nodes in the object tree are instances of PyTables classes.
There are several types of classes, but the most important ones are the Node,
Group and Leaf classes. All nodes in a PyTables tree are instances of the
Node class. The Group and Leaf classes are descendants of Node. Group
instances (referred to as groups from now on) are a grouping structure
containing instances of zero or more groups or leaves, together with
supplementary metadata. Leaf instances (referred to as leaves) are
containers for actual data and can not contain further groups or leaves. The
Table, Array, CArray, EArray, VLArray and UnImplemented classes are
descendants of Leaf, and inherit all its properties.

Working with groups and leaves is similar in many ways to working with
directories and files on a Unix filesystem, i.e. a node (file or directory)
is always a child of one and only one group (directory), its parent group
[1].
Inside of that group, the node is accessed by its name. As is the case with
Unix directories and files, objects in the object tree are often referenced
by giving their full (absolute) path names. In PyTables this full path can be
specified either as string (such as ‘/subgroup2/table3’, using / as a
parent/child separator) or as a complete object path written in a format
known as the natural name schema (such as file.root.subgroup2.table3).

Support for natural naming is a key aspect of PyTables. It means that the
names of instance variables of the node objects are the same as the names of
its children [2]. This is very Pythonic and intuitive in many cases. Check
the tutorial Reading (and selecting) data in a table for usage examples.

You should also be aware that not all the data present in a file is loaded
into the object tree. The metadata (i.e. special data that describes the
structure of the actual data) is loaded only when the user want to access to
it (see later). Moreover, the actual data is not read until she request it
(by calling a method on a particular node). Using the object tree (the
metadata) you can retrieve information about the objects on disk such as
table names, titles, column names, data types in columns, numbers of rows,
or, in the case of arrays, their shapes, typecodes, etc. You can also search
through the tree for specific kinds of data then read it and process it. In a
certain sense, you can think of PyTables as a tool that applies the same
introspection capabilities of Python objects to large amounts of data in
persistent storage.

It is worth noting that PyTables sports a metadata cache system that loads
nodes lazily (i.e. on-demand), and unloads nodes that have not been used
for some time (following a Least Recently Used schema). It is important to
stress out that the nodes enter the cache after they have been unreferenced
(in the sense of Python reference counting), and that they can be revived (by
referencing them again) directly from the cache without performing the
de-serialization process from disk. This feature allows dealing with files
with large hierarchies very quickly and with low memory consumption, while
retaining all the powerful browsing capabilities of the previous
implementation of the object tree. See [OPTIM] for more facts
about the advantages introduced by this new metadata cache system.

To better understand the dynamic nature of this object tree entity, let’s
start with a sample PyTables script (which you can find in
examples/objecttree.py) to create an HDF5 file:

from tables import *

class Particle(IsDescription):
 identity = StringCol(itemsize=22, dflt=" ", pos=0) # character String
 idnumber = Int16Col(dflt=1, pos = 1) # short integer
 speed = Float32Col(dflt=1, pos = 2) # single-precision

Open a file in "w"rite mode
fileh = open_file("objecttree.h5", mode = "w")

Get the HDF5 root group
root = fileh.root

Create the groups
group1 = fileh.create_group(root, "group1")
group2 = fileh.create_group(root, "group2")

Now, create an array in root group
array1 = fileh.create_array(root, "array1", ["string", "array"], "String array")

Create 2 new tables in group1
table1 = fileh.create_table(group1, "table1", Particle)
table2 = fileh.create_table("/group2", "table2", Particle)

Create the last table in group2
array2 = fileh.create_array("/group1", "array2", [1,2,3,4])

Now, fill the tables
for table in (table1, table2):
 # Get the record object associated with the table:
 row = table.row

 # Fill the table with 10 records
 for i in xrange(10):
 # First, assign the values to the Particle record
 row['identity'] = 'This is particle: %2d' % (i)
 row['idnumber'] = i
 row['speed'] = i * 2.

 # This injects the Record values
 row.append()

 # Flush the table buffers
 table.flush()

Finally, close the file (this also will flush all the remaining buffers!)
fileh.close()

This small program creates a simple HDF5 file called objecttree.h5 with the
structure that appears in Figure 1 [3].
When the file is created, the metadata in the object tree is updated in
memory while the actual data is saved to disk. When you close the file the
object tree is no longer available. However, when you reopen this file the
object tree will be reconstructed in memory from the metadata on disk (this
is done in a lazy way, in order to load only the objects that are required by
the user), allowing you to work with it in exactly the same way as when you
originally created it.

[image: ../_images/objecttree-h5.png]
Figure 1: An HDF5 example with 2 subgroups, 2 tables and 1 array.

In Figure2, you can see an example of the object tree
created when the above objecttree.h5 file is read (in fact, such an object
tree is always created when reading any supported generic HDF5 file).
It is worthwhile to take your time to understand it [4].
It will help you understand the relationships of in-memory PyTables objects.

Figure 2: A PyTables object tree example.

	[1]	PyTables does not support hard links - for the moment.

	[2]	I got this simple but powerful idea from the excellent Objectify
module by David Mertz (see [MERTZ]).

	[3]	We have used ViTables (see [VITABLES]) in order to
create this snapshot.

	[4]	Bear in mind, however, that this diagram is not a standard UML class
diagram; it is rather meant to show the connections between the
PyTables objects and some of its most important attributes and
methods.

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables User’s Guide

Installation

Make things as simple as possible, but not any simpler.

Albert Einstein

The Python Distutils are used to build and install PyTables, so it is fairly
simple to get the application up and running. If you want to install the
package from sources you can go on reading to the next section.

However, if you want to go straight to binaries that ‘just work’ for the main
platforms (Linux, Mac OSX and Windows), you might want to use the excellent
Anaconda [https://store.continuum.io/cshop/anaconda/] or Canopy [https://www.enthought.com/products/canopy/] distributions. PyTables usually distributes its own
Windows binaries too; go Binary installation (Windows) for instructions.
Finally Christoph Gohlke [http://www.lfd.uci.edu/~gohlke/pythonlibs/] also maintains an excellent suite of a variety of
binary packages for Windows at his site.

Installation from source

These instructions are for both Unix/MacOS X and Windows systems. If you are
using Windows, it is assumed that you have a recent version of MS Visual C++
compiler installed.
A GCC compiler is assumed for Unix, but other compilers should work as well.

Extensions in PyTables have been developed in Cython (see
[CYTHON]) and the C language. You can rebuild everything from
scratch if you have Cython installed, but this is not necessary, as the Cython
compiled source is included in the source distribution.

To compile PyTables you will need a recent version of Python, the HDF5 (C
flavor) library from http://www.hdfgroup.org, and the NumPy (see
[NUMPY]) and Numexpr (see [NUMEXPR])
packages.

Prerequisites

First, make sure that you have

	Python [http://www.python.org] >= 2.7 including Python 3.x

	HDF5 [http://www.hdfgroup.org/HDF5] >= 1.8.4 (>=1.8.15 is strongly recommended, HDF5 v1.10 not supported)

	NumPy [http://www.numpy.org] >= 1.8.1

	Numexpr [http://code.google.com/p/numexpr] >= 2.5.2

	Cython [http://www.cython.org] >= 0.21

	c-blosc [http://blosc.org] >= 1.4.1 (sources are bundled with PyTables sources but the user can
use an external version of sources using the BLOSC_DIR environment
variable or the --blosc flag of the setup.py)

installed (for testing purposes, we are using HDF5 [http://www.hdfgroup.org/HDF5] 1.8.15, NumPy [http://www.numpy.org] 1.10.2
and Numexpr [http://code.google.com/p/numexpr] 2.5.2 currently). If you don’t, fetch and install them before
proceeding.

Compile and install these packages (but see Windows prerequisites for
instructions on how to install pre-compiled binaries if you are not willing
to compile the prerequisites on Windows systems).

For compression (and possibly improved performance), you will need to install
the Zlib (see [ZLIB]), which is also required by HDF5 as well.
You may also optionally install the excellent LZO compression library (see
[LZO] and Compression issues). The high-performance bzip2
compression library can also be used with PyTables (see
[BZIP2]).

The Blosc (see [BLOSC]) compression library is embedded
in PyTables, so this will be used in case it is not found in the
system. So, in case the installer warns about not finding it, do not
worry too much ;)

Unix

setup.py will detect HDF5, Blosc, LZO, or bzip2 libraries and include
files under /usr or /usr/local; this will cover most
manual installations as well as installations from packages. If setup.py
can not find libhdf5, libhdf5 (or liblzo, or libbz2 that you may wish to
use) or if you have several versions of a library installed and want to
use a particular one, then you can set the path to the resource in the
environment, by setting the values of the HDF5_DIR,
LZO_DIR, BZIP2_DIR or BLOSC_DIR environment
variables to the path to the particular resource. You may also specify the
locations of the resource root directories on the setup.py command line.
For example:

--hdf5=/stuff/hdf5-1.8.12
--blosc=/stuff/blosc-1.8.1
--lzo=/stuff/lzo-2.02
--bzip2=/stuff/bzip2-1.0.5

If your HDF5 library was built as a shared library not in the runtime load
path, then you can specify the additional linker flags needed to find the
shared library on the command line as well. For example:

--lflags="-Xlinker -rpath -Xlinker /stuff/hdf5-1.8.12/lib"

You may also want to try setting the LD_LIBRARY_PATH
environment variable to point to the directory where the shared libraries
can be found. Check your compiler and linker documentation as well as the
Python Distutils documentation for the correct syntax or environment
variable names.
It is also possible to link with specific libraries by setting the
LIBS environment variable:

LIBS="hdf5-1.8.12 nsl"

Starting from PyTables 3.2 can also query the pkg-config database to
find the required packages. If available, pkg-config is used by default
unless explicitly disabled.

To suppress the use of pkg-config:

$ python setup.py build --use-pkgconfig=FALSE

or use the USE-PKGCONFIG environment variable:

$ env USE_PKGCONFIG=FALSE python setup.py build

Windows

You can get ready-to-use Windows binaries and other development files for
most of the following libraries from the GnuWin32 project (see
[GNUWIN32]). In case you cannot find the LZO binaries
in the GnuWin32 repository, you can find them at
http://sourceforge.net/projects/pytables/files/lzo-win.
Once you have installed the prerequisites, setup.py needs to know where
the necessary library stub (.lib) and header (.h) files are installed.
You can set the path to the include and dll directories for the HDF5
(mandatory) and LZO, BZIP2, BLOSC (optional) libraries in the environment,
by setting the values of the HDF5_DIR, LZO_DIR,
BZIP2_DIR or BLOSC_DIR environment variables to the
path to the particular resource. For example:

set HDF5_DIR=c:\\stuff\\hdf5-1.8.5-32bit-VS2008-IVF101\\release
set BLOSC_DIR=c:\\Program Files (x86)\\Blosc
set LZO_DIR=c:\\Program Files (x86)\\GnuWin32
set BZIP2_DIR=c:\\Program Files (x86)\\GnuWin32

You may also specify the locations of the resource root directories on the
setup.py command line.
For example:

--hdf5=c:\\stuff\\hdf5-1.8.5-32bit-VS2008-IVF101\\release
--blosc=c:\\Program Files (x86)\\Blosc
--lzo=c:\\Program Files (x86)\\GnuWin32
--bzip2=c:\\Program Files (x86)\\GnuWin32

Development version (Unix)

Installation of the development version is very similar to installation
from a source package (described above). There are two main differences:

	sources have to be downloaded from the PyTables source repository [https://github.com/PyTables/PyTables]
hosted on GitHub [https://github.com]. Git (see [GIT]) is used as VCS.
The following command create a local copy of latest development version
sources:

$ git clone https://github.com/PyTables/PyTables.git

	sources in the git repository do not include pre-built documentation
and pre-generated C code of Cython extension modules. To be able to
generate them, both Cython (see [CYTHON]) and
sphinx >= 1.0.7 (see [SPHINX]) are mandatory
prerequisites.

PyTables package installation

Once you have installed the HDF5 library and the NumPy and Numexpr packages,
you can proceed with the PyTables package itself.

	Run this command from the main PyTables distribution directory, including
any extra command line arguments as discussed above:

$ python setup.py build

If the HDF5 installation is in a custom path, e.g. $HOME/hdf5-1.8.15pre7,
one of the following commands can be used:

$ python setup.py build --hdf5=$HOME/hdf5-1.8.15pre7

	To run the test suite, execute any of these commands.

	Unix

	In the sh shell and its variants:

$ cd build/lib.linux-x86_64-3.3
$ env PYTHONPATH=. python tables/tests/test_all.py

or, if you prefer:

$ cd build/lib.linux-x86_64-3.3
$ env PYTHONPATH=. python -c "import tables; tables.test()"

Note

the syntax used above overrides original contents of the
PYTHONPATH environment variable.
If this is not the desired behaviour and the user just wants to add
some path before existing ones, then the safest syntax to use is
the following:

$ env PYTHONPATH=.${PYTHONPATH:+:$PYTHONPATH} python tables/tests/test_all.py

Please refer to your sh documentation for details.

Windows

Open the command prompt (cmd.exe or command.com) and type:

> cd build\\lib.linux-x86_64-2.7
> set PYTHONPATH=.;%PYTHONPATH%
> python tables\\tests\\test_all.py

or:

> cd build\\lib.linux-x86_64-2.7
> set PYTHONPATH=.;%PYTHONPATH%
> python -c "import tables; tables.test()"

Both commands do the same thing, but the latter still works on an already
installed PyTables (so, there is no need to set the PYTHONPATH
variable for this case).
However, before installation, the former is recommended because it is
more flexible, as you can see below.
If you would like to see verbose output from the tests simply add the
-v flag and/or the word verbose to the first of the command lines
above. You can also run only the tests in a particular test module.
For example, to execute just the test_types test suite, you only have to
specify it:

change to backslashes for win
$ python tables/tests/test_types.py -v

You have other options to pass to the test_all.py driver:

change to backslashes for win
$ python tables/tests/test_all.py --heavy

The command above runs every test in the test unit. Beware, it can take a
lot of time, CPU and memory resources to complete:

change to backslashes for win
$ python tables/tests/test_all.py --print-versions

The command above shows the versions for all the packages that PyTables
relies on. Please be sure to include this when reporting bugs:

only under Linux 2.6.x
$ python tables/tests/test_all.py --show-memory

The command above prints out the evolution of the memory consumption after
each test module completion. It’s useful for locating memory leaks in
PyTables (or packages behind it). Only valid for Linux 2.6.x kernels.
And last, but not least, in case a test fails, please run the failing test
module again and enable the verbose output:

$ python tables/tests/test_<module>.py -v verbose

and, very important, obtain your PyTables version information by using the
--print-versions flag (see above) and send back both outputs to
developers so that we may continue improving PyTables.
If you run into problems because Python can not load the HDF5 library or
other shared libraries.

Unix

Try setting the LD_LIBRARY_PATH or equivalent environment variable to
point to the directory where the missing libraries can be found.

Windows

Put the DLL libraries (hdf5dll.dll and, optionally, lzo1.dll,
bzip2.dll or blosc.dll) in a directory listed in your
PATH environment variable. The setup.py installation
program will print out a warning to that effect if the libraries
can not be found.

	To install the entire PyTables Python package, change back to the root
distribution directory and run the following command (make sure you have
sufficient permissions to write to the directories where the PyTables files
will be installed):

$ python setup.py install

Again if one needs to point to libraries installed in custom paths, then
specific setup.py options can be used:

$ python setup.py install --hdf5=/hdf5/custom/path

or:

$ env HDF5_DIR=/hdf5/custom/path python setup.py install

Of course, you will need super-user privileges if you want to install
PyTables on a system-protected area. You can select, though, a different
place to install the package using the --prefix flag:

$ python setup.py install --prefix="/home/myuser/mystuff"

Have in mind, however, that if you use the --prefix flag to
install in a non-standard place, you should properly setup your
PYTHONPATH environment variable, so that the Python interpreter
would be able to find your new PyTables installation.
You have more installation options available in the Distutils package.
Issue a:

$ python setup.py install --help

for more information on that subject.

That’s it! Now you can skip to the next chapter to learn how to use PyTables.

Installation with pip

Many users find it useful to use the pip program (or similar ones)
to install python packages.

As explained in previous sections the user should in any case ensure that all
dependencies listed in the Prerequisites section are correctly installed.

The simplest way to install PyTables using pip is the following:

$ pip install tables

The following example shows how to install the latest stable version of
PyTables in the user folder when a older version of the package is already
installed at system level:

$ pip install --user --upgrade tables

The –user option tells to the pip tool to install the package in
the user folder ($HOME/.local on GNU/Linux and Unix systems), while the
–upgrade option forces the installation of the latest version even if an
older version of the package is already installed.

Additional options for the setup.py script can be specified using them
–install-option:

$ pip install --install-option='--hdf5=/custom/path/to/hdf5' tables

or:

$ env HDF5_DIR=/custom/path/to/hdf5 pip install tables

The pip tool can also be used to install packages from a source
tar-ball:

$ pip install tables-3.0.0.tar.gz

To install the development version of PyTables from the develop branch of
the main git [GIT] repository the command is the
following:

$ pip install git+https://github.com/PyTables/PyTables.git@develop#egg=tables

A similar command can be used to install a specific tagged fersion:

$ pip install git+https://github.com/PyTables/PyTables.git@v.2.4.0#egg=tables

Finally, PyTables developers provide a requirements.txt file that
can be used by pip to install the PyTables dependencies:

$ wget https://raw.github.com/PyTables/PyTables/develop/requirements.txt
$ pip install -r requirements.txt

Of course the requirements.txt file can be used to install only
python packages. Other dependencies like the HDF5 library of compression
libraries have to be installed by the user.

Note

Recent versions of Debian [https://www.debian.org] and Ubuntu [http://www.ubuntu.com] the HDF5 library is installed in
with a very peculiar layout that allows to have both the serial and MPI
versions installed at the same time.

PyTables >= 3.2 natively supports the new layout via pkg-config (that
is expected to be installed on the system at build time).

If pkg-config is not available or PyTables is older that verison 3.2,
then the following command can be used:

$ env CPPFLAGS=-I/usr/include/hdf5/serial \
LDFLAGS=-L/usr/lib/x86_64-linux-gnu/hdf5/serial python3 setup.py install

or:

$ env CPPFLAGS=-I/usr/include/hdf5/serial \
LDFLAGS=-L/usr/lib/x86_64-linux-gnu/hdf5/serial pip install tables

Binary installation (Windows)

This section is intended for installing precompiled binaries on Windows
platforms. Binaries are distribution in wheel format, which can be downloaded
and installed using pip as described above. You may also find it useful for
instructions on how to install binary prerequisites even if you want to
compile PyTables itself on Windows.

Windows prerequisites

First, make sure that you have Python 2.7, NumPy 1.8.0 and Numexpr 2.5.2 or
higher installed.

To enable compression with the optional LZO library (see the
Compression issues for hints about how it may be used to improve
performance), fetch and install the LZO from
http://sourceforge.net/projects/pytables/files/lzo-win (choose v1.x for
Windows 32-bit and v2.x for Windows 64-bit).
Normally, you will only need to fetch that package and copy the included
lzo1.dll/lzo2.dll file in a directory in the PATH environment variable
(for example C:\WINDOWS\SYSTEM) or
python_installation_path\Lib\site-packages\tables (the last directory may
not exist yet, so if you want to install the DLL there, you should do so
after installing the PyTables package), so that it can be found by the
PyTables extensions.

Please note that PyTables has internal machinery for dealing with uninstalled
optional compression libraries, so, you don’t need to install the LZO or bzip2
dynamic libraries if you don’t want to.

PyTables package installation

On PyPI wheels for 32 and 64-bit versions of Windows and are usually provided. They
are automatically found and installed using pip:

$ pip install tables

If a matching wheel cannot be found for your installation, third party built wheels
can be found e.g. at the Unofficial Windows Binaries for Python Extension Packages [http://www.lfd.uci.edu/~gohlke/pythonlibs/#pytables] page. Download the wheel
matching the version of python and either the 32 or 64-bit version and install
using pip:

python 3.5 64-bit:
$ pip install tables-3.3-cp35-cp35m-win_amd64.whl

You can (and you should) test your installation by running the next
commands:

>>> import tables
>>> tables.test()

on your favorite python shell. If all the tests pass (possibly with a few
warnings, related to the potential unavailability of LZO lib) you already have
a working, well-tested copy of PyTables installed! If any test fails, please
copy the output of the error messages as well as the output of:

>>> tables.print_versions()

and mail them to the developers so that the problem can be fixed in future
releases.

You can proceed now to the next chapter to see how to use PyTables.

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables User’s Guide

Tutorials

Seràs la clau que obre tots els panys,
seràs la llum, la llum il.limitada,
seràs confí on l’aurora comença,
seràs forment, escala il.luminada!

Lyrics: Vicent Andrés i Estellés. Music: Ovidi Montllor, Toti Soler, M’aclame a tu

This chapter consists of a series of simple yet comprehensive
tutorials that will enable you to understand PyTables’ main features. If
you would like more information about some particular instance variable,
global function, or method, look at the doc strings or go to the library
reference in Library Reference. If you are reading this in PDF or HTML
formats, follow the corresponding hyperlink near each newly introduced
entity.

Please note that throughout this document the terms column and field
will be used interchangeably, as will the terms row and record.

Getting started

In this section, we will see how to define our own records in Python and save
collections of them (i.e. a table) into a file. Then we will select some of
the data in the table using Python cuts and create NumPy arrays to store this
selection as separate objects in a tree.

In examples/tutorial1-1.py you will find the working version of all the
code in this section. Nonetheless, this tutorial series has been written to
allow you reproduce it in a Python interactive console. I encourage you to do
parallel testing and inspect the created objects (variables, docs, children
objects, etc.) during the course of the tutorial!

Importing tables objects

Before starting you need to import the public objects in the tables package.
You normally do that by executing:

>>> import tables

This is the recommended way to import tables if you don’t want to pollute
your namespace. However, PyTables has a contained set of first-level
primitives, so you may consider using the alternative:

>>> from tables import *

If you are going to work with NumPy arrays (and normally, you will) you will
also need to import functions from the numpy package. So most PyTables
programs begin with:

>>> import tables # but in this tutorial we use "from tables import *"
>>> import numpy

Declaring a Column Descriptor

Now, imagine that we have a particle detector and we want to create a table
object in order to save data retrieved from it. You need first to define the
table, the number of columns it has, what kind of object is contained in each
column, and so on.

Our particle detector has a TDC (Time to Digital Converter) counter with a
dynamic range of 8 bits and an ADC (Analogical to Digital Converter) with a
range of 16 bits. For these values, we will define 2 fields in our record
object called TDCcount and ADCcount. We also want to save the grid position
in which the particle has been detected, so we will add two new fields called
grid_i and grid_j. Our instrumentation also can obtain the pressure and
energy of the particle. The resolution of the pressure-gauge allows us to use
a single-precision float to store pressure readings, while the energy value
will need a double-precision float. Finally, to track the particle we want to
assign it a name to identify the kind of the particle it is and a unique
numeric identifier. So we will add two more fields: name will be a string of
up to 16 characters, and idnumber will be an integer of 64 bits (to allow us
to store records for extremely large numbers of particles).

Having determined our columns and their types, we can now declare a new
Particle class that will contain all this information:

>>> from tables import *
>>> class Particle(IsDescription):
... name = StringCol(16) # 16-character String
... idnumber = Int64Col() # Signed 64-bit integer
... ADCcount = UInt16Col() # Unsigned short integer
... TDCcount = UInt8Col() # unsigned byte
... grid_i = Int32Col() # 32-bit integer
... grid_j = Int32Col() # 32-bit integer
... pressure = Float32Col() # float (single-precision)
... energy = Float64Col() # double (double-precision)
>>>

This definition class is self-explanatory. Basically, you declare a class
variable for each field you need. As its value you assign an instance of the
appropriate Col subclass, according to the kind of column defined (the data
type, the length, the shape, etc). See the The Col class and its descendants for a
complete description of these subclasses. See also Supported data types in PyTables for a
list of data types supported by the Col constructor.

From now on, we can use Particle instances as a descriptor for our detector
data table. We will see later on how to pass this object to construct the
table. But first, we must create a file where all the actual data pushed into
our table will be saved.

Creating a PyTables file from scratch

Use the top-level open_file() function to create a PyTables file:

>>> h5file = open_file("tutorial1.h5", mode = "w", title = "Test file")

open_file() is one of the objects imported by the
`from tables import *` statement. Here, we are saying that we want to
create a new file in the current working directory called “tutorial1.h5” in
“w”rite mode and with an descriptive title string (“Test file”).
This function attempts to open the file, and if successful, returns the File
(see The File Class) object instance h5file. The root of the object
tree is specified in the instance’s root attribute.

Creating a new group

Now, to better organize our data, we will create a group called detector
that branches from the root node. We will save our particle data table in
this group:

>>> group = h5file.create_group("/", 'detector', 'Detector information')

Here, we have taken the File instance h5file and invoked its
File.create_group() method to create a new group called detector
branching from “/” (another way to refer to the h5file.root object we
mentioned above). This will create a new Group (see The Group class)
object instance that will be assigned to the variable group.

Creating a new table

Let’s now create a Table (see The Table class) object as a branch off
the newly-created group. We do that by calling the File.create_table()
method of the h5file object:

>>> table = h5file.create_table(group, 'readout', Particle, "Readout example")

We create the Table instance under group. We assign this table the node name
“readout”. The Particle class declared before is the description
parameter (to define the columns of the table) and finally we set
“Readout example” as the Table title. With all this information, a new
Table instance is created and assigned to the variable table.

If you are curious about how the object tree looks right now, simply print
the File instance variable h5file, and examine the output:

>>> print(h5file)
tutorial1.h5 (File) 'Test file'
Last modif.: 'Wed Mar 7 11:06:12 2007'
Object Tree:
/ (RootGroup) 'Test file'
/detector (Group) 'Detector information'
/detector/readout (Table(0,)) 'Readout example'

As you can see, a dump of the object tree is displayed. It’s easy to see the
Group and Table objects we have just created. If you want more information,
just type the variable containing the File instance:

>>> h5file
File(filename='tutorial1.h5', title='Test file', mode='w', root_uep='/', filters=Filters(complevel=0, shuffle=False, bitshuffle=False, fletcher32=False))
/ (RootGroup) 'Test file'
/detector (Group) 'Detector information'
/detector/readout (Table(0,)) 'Readout example'
description := {
 "ADCcount": UInt16Col(shape=(), dflt=0, pos=0),
 "TDCcount": UInt8Col(shape=(), dflt=0, pos=1),
 "energy": Float64Col(shape=(), dflt=0.0, pos=2),
 "grid_i": Int32Col(shape=(), dflt=0, pos=3),
 "grid_j": Int32Col(shape=(), dflt=0, pos=4),
 "idnumber": Int64Col(shape=(), dflt=0, pos=5),
 "name": StringCol(itemsize=16, shape=(), dflt='', pos=6),
 "pressure": Float32Col(shape=(), dflt=0.0, pos=7)}
 byteorder := 'little'
 chunkshape := (87,)

More detailed information is displayed about each object in the tree. Note
how Particle, our table descriptor class, is printed as part of the readout
table description information. In general, you can obtain much more
information about the objects and their children by just printing them. That
introspection capability is very useful, and I recommend that you use it
extensively.

The time has come to fill this table with some values. First we will get a
pointer to the Row (see The Row class) instance of this table
instance:

>>> particle = table.row

The row attribute of table points to the Row instance that will be used to
write data rows into the table. We write data simply by assigning the Row
instance the values for each row as if it were a dictionary (although it is
actually an extension class), using the column names as keys.

Below is an example of how to write rows:

>>> for i in xrange(10):
... particle['name'] = 'Particle: %6d' % (i)
... particle['TDCcount'] = i % 256
... particle['ADCcount'] = (i * 256) % (1 << 16)
... particle['grid_i'] = i
... particle['grid_j'] = 10 - i
... particle['pressure'] = float(i*i)
... particle['energy'] = float(particle['pressure'] ** 4)
... particle['idnumber'] = i * (2 ** 34)
... # Insert a new particle record
... particle.append()
>>>

This code should be easy to understand. The lines inside the loop just assign
values to the different columns in the Row instance particle (see
The Row class). A call to its append() method writes this information
to the table I/O buffer.

After we have processed all our data, we should flush the table’s I/O buffer
if we want to write all this data to disk. We achieve that by calling the
table.flush() method:

>>> table.flush()

Remember, flushing a table is a very important step as it will not only
help to maintain the integrity of your file, but also will free valuable
memory resources (i.e. internal buffers) that your program may need for other
things.

Reading (and selecting) data in a table

Ok. We have our data on disk, and now we need to access it and select from
specific columns the values we are interested in. See the example below:

>>> table = h5file.root.detector.readout
>>> pressure = [x['pressure'] for x in table.iterrows() if x['TDCcount'] > 3 and 20 <= x['pressure'] < 50]
>>> pressure
[25.0, 36.0, 49.0]

The first line creates a “shortcut” to the readout table deeper on the
object tree. As you can see, we use the natural naming schema to access it.
We also could have used the h5file.get_node() method, as we will do later on.

You will recognize the last two lines as a Python list comprehension.
It loops over the rows in table as they are provided by the
Table.iterrows() iterator. The iterator returns values until all the
data in table is exhausted. These rows are filtered using the expression:

x['TDCcount'] > 3 and 20 <= x['pressure'] < 50

So, we are selecting the values of the pressure column from filtered records
to create the final list and assign it to pressure variable.

We could have used a normal for loop to accomplish the same purpose, but I
find comprehension syntax to be more compact and elegant.

PyTables do offer other, more powerful ways of performing selections which
may be more suitable if you have very large tables or if you need very high
query speeds. They are called in-kernel and indexed queries, and you can
use them through Table.where() and other related methods.

Let’s use an in-kernel selection to query the name column for the same set of
cuts:

>>> names = [x['name'] for x in table.where("""(TDCcount > 3) & (20 <= pressure) & (pressure < 50)""")]
>>> names
['Particle: 5', 'Particle: 6', 'Particle: 7']

In-kernel and indexed queries are not only much faster, but as you can see,
they also look more compact, and are among the greatests features for
PyTables, so be sure that you use them a lot. See Condition Syntax and
Accelerating your searches for more information on in-kernel and indexed selections.

Note

A special care should be taken when the query condition includes
string literals. Indeed Python 2 string literals are string of
bytes while Python 3 strings are unicode objects.

With reference to the above definition of Particle it has to be
noted that the type of the “name” column do not change depending on the
Python version used (of course).
It always corresponds to strings of bytes.

Any condition involving the “name” column should be written using the
appropriate type for string literals in order to avoid
TypeErrors.

Suppose one wants to get rows corresponding to specific particle names.

The code below will work fine in Python 2 but will fail with a
TypeError in Python 3:

>>> condition = '(name == "Particle: 5") | (name == "Particle: 7")'
>>> for record in table.where(condition): # TypeError in Python3
... # do something with "record"

The reason is that in Python 3 “condition” implies a comparison
between a string of bytes (“name” column contents) and an unicode
literals.

The correct way to write the condition is:

>>> condition = '(name == b"Particle: 5") | (name == b"Particle: 7")'

That’s enough about selections for now. The next section will show you how to
save these selected results to a file.

Creating new array objects

In order to separate the selected data from the mass of detector data, we
will create a new group columns branching off the root group. Afterwards,
under this group, we will create two arrays that will contain the selected
data. First, we create the group:

>>> gcolumns = h5file.create_group(h5file.root, "columns", "Pressure and Name")

Note that this time we have specified the first parameter using natural
naming (h5file.root) instead of with an absolute path string (“/”).

Now, create the first of the two Array objects we’ve just mentioned:

>>> h5file.create_array(gcolumns, 'pressure', array(pressure), "Pressure column selection")
/columns/pressure (Array(3,)) 'Pressure column selection'
 atom := Float64Atom(shape=(), dflt=0.0)
 maindim := 0
 flavor := 'numpy'
 byteorder := 'little'
 chunkshape := None

We already know the first two parameters of the File.create_array()
methods (these are the same as the first two in create_table): they are the
parent group where Array will be created and the Array instance name.
The third parameter is the object we want to save to disk. In this case, it
is a NumPy array that is built from the selection list we created before.
The fourth parameter is the title.

Now, we will save the second array. It contains the list of strings we
selected before: we save this object as-is, with no further conversion:

>>> h5file.create_array(gcolumns, 'name', names, "Name column selection")
/columns/name (Array(3,)) 'Name column selection'
 atom := StringAtom(itemsize=16, shape=(), dflt='')
 maindim := 0
 flavor := 'python'
 byteorder := 'irrelevant'
 chunkshape := None

As you can see, File.create_array() accepts names (which is a regular
Python list) as an object parameter. Actually, it accepts a variety of
different regular objects (see create_array()) as parameters. The flavor
attribute (see the output above) saves the original kind of object that was
saved. Based on this flavor, PyTables will be able to retrieve exactly the
same object from disk later on.

Note that in these examples, the create_array method returns an Array instance
that is not assigned to any variable. Don’t worry, this is intentional to
show the kind of object we have created by displaying its representation. The
Array objects have been attached to the object tree and saved to disk, as you
can see if you print the complete object tree:

>>> print(h5file)
tutorial1.h5 (File) 'Test file'
Last modif.: 'Wed Mar 7 19:40:44 2007'
Object Tree:
/ (RootGroup) 'Test file'
/columns (Group) 'Pressure and Name'
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'
/detector (Group) 'Detector information'
/detector/readout (Table(10,)) 'Readout example'

Closing the file and looking at its content

To finish this first tutorial, we use the close method of the h5file File
object to close the file before exiting Python:

>>> h5file.close()
>>> ^D
$

You have now created your first PyTables file with a table and two arrays.
You can examine it with any generic HDF5 tool, such as h5dump or h5ls. Here is
what the tutorial1.h5 looks like when read with the h5ls program.

$ h5ls -rd tutorial1.h5
/columns Group
/columns/name Dataset {3}
 Data:
 (0) "Particle: 5", "Particle: 6", "Particle: 7"
/columns/pressure Dataset {3}
 Data:
 (0) 25, 36, 49
/detector Group
/detector/readout Dataset {10/Inf}
 Data:
 (0) {0, 0, 0, 0, 10, 0, "Particle: 0", 0},
 (1) {256, 1, 1, 1, 9, 17179869184, "Particle: 1", 1},
 (2) {512, 2, 256, 2, 8, 34359738368, "Particle: 2", 4},
 (3) {768, 3, 6561, 3, 7, 51539607552, "Particle: 3", 9},
 (4) {1024, 4, 65536, 4, 6, 68719476736, "Particle: 4", 16},
 (5) {1280, 5, 390625, 5, 5, 85899345920, "Particle: 5", 25},
 (6) {1536, 6, 1679616, 6, 4, 103079215104, "Particle: 6", 36},
 (7) {1792, 7, 5764801, 7, 3, 120259084288, "Particle: 7", 49},
 (8) {2048, 8, 16777216, 8, 2, 137438953472, "Particle: 8", 64},
 (9) {2304, 9, 43046721, 9, 1, 154618822656, "Particle: 9", 81}

Here’s the output as displayed by the “ptdump” PyTables utility (located in
utils/ directory).

$ ptdump tutorial1.h5
/ (RootGroup) 'Test file'
/columns (Group) 'Pressure and Name'
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'
/detector (Group) 'Detector information'
/detector/readout (Table(10,)) 'Readout example'

You can pass the -v or -d options to ptdump if you want
more verbosity. Try them out!

Also, in Figure 1, you can admire how the
tutorial1.h5 looks like using the ViTables [http://vitables.org] graphical
interface.

[image: ../_images/tutorial1-1-tableview.png]
Figure 1. The initial version of the data file for tutorial 1, with a
view of the data objects.

Browsing the object tree

In this section, we will learn how to browse the tree and retrieve data and
also meta-information about the actual data.

In examples/tutorial1-2.py you will find the working version of all the
code in this section. As before, you are encouraged to use a python shell and
inspect the object tree during the course of the tutorial.

Traversing the object tree

Let’s start by opening the file we created in last tutorial section:

>>> h5file = open_file("tutorial1.h5", "a")

This time, we have opened the file in “a”ppend mode. We use this mode to add
more information to the file.

PyTables, following the Python tradition, offers powerful introspection
capabilities, i.e. you can easily ask information about any component of the
object tree as well as search the tree.

To start with, you can get a preliminary overview of the object tree by
simply printing the existing File instance:

>>> print(h5file)
tutorial1.h5 (File) 'Test file'
Last modif.: 'Wed Mar 7 19:50:57 2007'
Object Tree:
/ (RootGroup) 'Test file'
/columns (Group) 'Pressure and Name'
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'
/detector (Group) 'Detector information'
/detector/readout (Table(10,)) 'Readout example'

It looks like all of our objects are there. Now let’s make use of the File
iterator to see how to list all the nodes in the object tree:

>>> for node in h5file:
... print(node)
/ (RootGroup) 'Test file'
/columns (Group) 'Pressure and Name'
/detector (Group) 'Detector information'
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'
/detector/readout (Table(10,)) 'Readout example'

We can use the File.walk_groups() method of the File class to list only
the groups on tree:

>>> for group in h5file.walk_groups():
... print(group)
/ (RootGroup) 'Test file'
/columns (Group) 'Pressure and Name'
/detector (Group) 'Detector information'

Note that File.walk_groups() actually returns an iterator, not a list
of objects. Using this iterator with the list_nodes() method is a powerful
combination. Let’s see an example listing of all the arrays in the tree:

>>> for group in h5file.walk_groups("/"):
... for array in h5file.list_nodes(group, classname='Array'):
... print(array)
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'

File.list_nodes() returns a list containing all the nodes hanging off a
specific Group. If the classname keyword is specified, the method will
filter out all instances which are not descendants of the class. We have
asked for only Array instances. There exist also an iterator counterpart
called File.iter_nodes() that might be handy is some situations, like
for example when dealing with groups with a large number of nodes behind it.

We can combine both calls by using the File.walk_nodes() special method
of the File object. For example:

>>> for array in h5file.walk_nodes("/", "Array"):
... print(array)
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'

This is a nice shortcut when working interactively.

Finally, we will list all the Leaf, i.e. Table and Array instances (see
The Leaf class for detailed information on Leaf class), in the
/detector group. Note that only one instance of the Table class (i.e.
readout) will be selected in this group (as should be the case):

>>> for leaf in h5file.root.detector._f_walknodes('Leaf'):
... print(leaf)
/detector/readout (Table(10,)) 'Readout example'

We have used a call to the Group._f_walknodes() method, using the
natural naming path specification.

Of course you can do more sophisticated node selections using these powerful
methods. But first, let’s take a look at some important PyTables object
instance variables.

Setting and getting user attributes

PyTables provides an easy and concise way to complement the meaning of your
node objects on the tree by using the AttributeSet class (see
The AttributeSet class). You can access this object through the
standard attribute attrs in Leaf nodes and _v_attrs in Group nodes.

For example, let’s imagine that we want to save the date indicating when the
data in /detector/readout table has been acquired, as well as the temperature
during the gathering process:

>>> table = h5file.root.detector.readout
>>> table.attrs.gath_date = "Wed, 06/12/2003 18:33"
>>> table.attrs.temperature = 18.4
>>> table.attrs.temp_scale = "Celsius"

Now, let’s set a somewhat more complex attribute in the /detector group:

>>> detector = h5file.root.detector
>>> detector._v_attrs.stuff = [5, (2.3, 4.5), "Integer and tuple"]

Note how the AttributeSet instance is accessed with the _v_attrs attribute
because detector is a Group node. In general, you can save any standard
Python data structure as an attribute node. See The AttributeSet class
for a more detailed explanation of how they are serialized for export to
disk.

Retrieving the attributes is equally simple:

>>> table.attrs.gath_date
'Wed, 06/12/2003 18:33'
>>> table.attrs.temperature
18.399999999999999
>>> table.attrs.temp_scale
'Celsius'
>>> detector._v_attrs.stuff
[5, (2.2999999999999998, 4.5), 'Integer and tuple']

You can probably guess how to delete attributes:

>>> del table.attrs.gath_date

If you want to examine the current user attribute set of /detector/table, you
can print its representation (try hitting the TAB key twice if you are on a
Unix Python console with the rlcompleter module active):

>>> table.attrs
/detector/readout._v_attrs (AttributeSet), 23 attributes:
 [CLASS := 'TABLE',
 FIELD_0_FILL := 0,
 FIELD_0_NAME := 'ADCcount',
 FIELD_1_FILL := 0,
 FIELD_1_NAME := 'TDCcount',
 FIELD_2_FILL := 0.0,
 FIELD_2_NAME := 'energy',
 FIELD_3_FILL := 0,
 FIELD_3_NAME := 'grid_i',
 FIELD_4_FILL := 0,
 FIELD_4_NAME := 'grid_j',
 FIELD_5_FILL := 0,
 FIELD_5_NAME := 'idnumber',
 FIELD_6_FILL := '',
 FIELD_6_NAME := 'name',
 FIELD_7_FILL := 0.0,
 FIELD_7_NAME := 'pressure',
 FLAVOR := 'numpy',
 NROWS := 10,
 TITLE := 'Readout example',
 VERSION := '2.6',
 temp_scale := 'Celsius',
 temperature := 18.399999999999999]

We’ve got all the attributes (including the system attributes). You can get
a list of all attributes or only the user or system attributes with the
_f_list() method:

>>> print(table.attrs._f_list("all"))
['CLASS', 'FIELD_0_FILL', 'FIELD_0_NAME', 'FIELD_1_FILL', 'FIELD_1_NAME',
'FIELD_2_FILL', 'FIELD_2_NAME', 'FIELD_3_FILL', 'FIELD_3_NAME', 'FIELD_4_FILL',
'FIELD_4_NAME', 'FIELD_5_FILL', 'FIELD_5_NAME', 'FIELD_6_FILL', 'FIELD_6_NAME',
'FIELD_7_FILL', 'FIELD_7_NAME', 'FLAVOR', 'NROWS', 'TITLE', 'VERSION',
'temp_scale', 'temperature']
>>> print(table.attrs._f_list("user"))
['temp_scale', 'temperature']
>>> print(table.attrs._f_list("sys"))
['CLASS', 'FIELD_0_FILL', 'FIELD_0_NAME', 'FIELD_1_FILL', 'FIELD_1_NAME',
'FIELD_2_FILL', 'FIELD_2_NAME', 'FIELD_3_FILL', 'FIELD_3_NAME', 'FIELD_4_FILL',
'FIELD_4_NAME', 'FIELD_5_FILL', 'FIELD_5_NAME', 'FIELD_6_FILL', 'FIELD_6_NAME',
'FIELD_7_FILL', 'FIELD_7_NAME', 'FLAVOR', 'NROWS', 'TITLE', 'VERSION']

You can also rename attributes:

>>> table.attrs._f_rename("temp_scale","tempScale")
>>> print(table.attrs._f_list())
['tempScale', 'temperature']

And, from PyTables 2.0 on, you are allowed also to set, delete or rename
system attributes:

>>> table.attrs._f_rename("VERSION", "version")
>>> table.attrs.VERSION
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "tables/attributeset.py", line 222, in __getattr__
 (name, self._v__nodepath)
AttributeError: Attribute 'VERSION' does not exist in node: '/detector/readout'
>>> table.attrs.version
'2.6'

Caveat emptor: you must be careful when modifying system attributes because
you may end fooling PyTables and ultimately getting unwanted behaviour. Use
this only if you know what are you doing.

So, given the caveat above, we will proceed to restore the original name of
VERSION attribute:

>>> table.attrs._f_rename("version", "VERSION")
>>> table.attrs.VERSION
'2.6'

Ok. that’s better. If you would terminate your session now, you would be able
to use the h5ls command to read the /detector/readout attributes from the
file written to disk.

$ h5ls -vr tutorial1.h5/detector/readout
Opened "tutorial1.h5" with sec2 driver.
/detector/readout Dataset {10/Inf}
 Attribute: CLASS scalar
 Type: 6-byte null-terminated ASCII string
 Data: "TABLE"
 Attribute: VERSION scalar
 Type: 4-byte null-terminated ASCII string
 Data: "2.6"
 Attribute: TITLE scalar
 Type: 16-byte null-terminated ASCII string
 Data: "Readout example"
 Attribute: NROWS scalar
 Type: native long long
 Data: 10
 Attribute: FIELD_0_NAME scalar
 Type: 9-byte null-terminated ASCII string
 Data: "ADCcount"
 Attribute: FIELD_1_NAME scalar
 Type: 9-byte null-terminated ASCII string
 Data: "TDCcount"
 Attribute: FIELD_2_NAME scalar
 Type: 7-byte null-terminated ASCII string
 Data: "energy"
 Attribute: FIELD_3_NAME scalar
 Type: 7-byte null-terminated ASCII string
 Data: "grid_i"
 Attribute: FIELD_4_NAME scalar
 Type: 7-byte null-terminated ASCII string
 Data: "grid_j"
 Attribute: FIELD_5_NAME scalar
 Type: 9-byte null-terminated ASCII string
 Data: "idnumber"
 Attribute: FIELD_6_NAME scalar
 Type: 5-byte null-terminated ASCII string
 Data: "name"
 Attribute: FIELD_7_NAME scalar
 Type: 9-byte null-terminated ASCII string
 Data: "pressure"
 Attribute: FLAVOR scalar
 Type: 5-byte null-terminated ASCII string
 Data: "numpy"
 Attribute: tempScale scalar
 Type: 7-byte null-terminated ASCII string
 Data: "Celsius"
 Attribute: temperature scalar
 Type: native double
 Data: 18.4
 Location: 0:1:0:1952
 Links: 1
 Modified: 2006-12-11 10:35:13 CET
 Chunks: {85} 3995 bytes
 Storage: 470 logical bytes, 3995 allocated bytes, 11.76% utilization
 Type: struct {
 "ADCcount" +0 native unsigned short
 "TDCcount" +2 native unsigned char
 "energy" +3 native double
 "grid_i" +11 native int
 "grid_j" +15 native int
 "idnumber" +19 native long long
 "name" +27 16-byte null-terminated ASCII string
 "pressure" +43 native float
 } 47 bytes

Attributes are a useful mechanism to add persistent (meta) information to
your data.

Getting object metadata

Each object in PyTables has metadata information about the data in the
file. Normally this meta-information is accessible through the node
instance variables. Let’s take a look at some examples:

>>> print("Object:", table)
Object: /detector/readout (Table(10,)) 'Readout example'
>>> print("Table name:", table.name)
Table name: readout
>>> print("Table title:", table.title)
Table title: Readout example
>>> print("Number of rows in table:", table.nrows)
Number of rows in table: 10
>>> print("Table variable names with their type and shape:")
Table variable names with their type and shape:
>>> for name in table.colnames:
... print(name, ':= %s, %s' % (table.coldtypes[name], table.coldtypes[name].shape))
ADCcount := uint16, ()
TDCcount := uint8, ()
energy := float64, ()
grid_i := int32, ()
grid_j := int32, ()
idnumber := int64, ()
name := |S16, ()
pressure := float32, ()

Here, the name, title, nrows, colnames and coldtypes attributes (see
Table for a complete attribute list) of the Table object gives us
quite a bit of information about the table data.

You can interactively retrieve general information about the public objects
in PyTables by asking for help:

>>> help(table)
Help on Table in module tables.table:
class Table(tableextension.Table, tables.leaf.Leaf)
| This class represents heterogeneous datasets in an HDF5 file.
|
| Tables are leaves (see the `Leaf` class) whose data consists of a
| unidimensional sequence of *rows*, where each row contains one or
| more *fields*. Fields have an associated unique *name* and
| *position*, with the first field having position 0. All rows have
| the same fields, which are arranged in *columns*.
[snip]
|
| Instance variables
| ------------------
|
| The following instance variables are provided in addition to those
| in `Leaf`. Please note that there are several `col` dictionaries
| to ease retrieving information about a column directly by its path
| name, avoiding the need to walk through `Table.description` or
| `Table.cols`.
|
| autoindex
| Automatically keep column indexes up to date?
|
| Setting this value states whether existing indexes should be
| automatically updated after an append operation or recomputed
| after an index-invalidating operation (i.e. removal and
| modification of rows). The default is true.
[snip]
| rowsize
| The size in bytes of each row in the table.
|
| Public methods -- reading
| -------------------------
|
| * col(name)
| * iterrows([start][, stop][, step])
| * itersequence(sequence)
* itersorted(sortby[, checkCSI][, start][, stop][, step])
| * read([start][, stop][, step][, field][, coords])
| * read_coordinates(coords[, field])
* read_sorted(sortby[, checkCSI][, field,][, start][, stop][, step])
| * __getitem__(key)
| * __iter__()
|
| Public methods -- writing
| -------------------------
|
| * append(rows)
| * modify_column([start][, stop][, step][, column][, colname])
[snip]

Try getting help with other object docs by yourself:

>>> help(h5file)
>>> help(table.remove_rows)

To examine metadata in the /columns/pressure Array object:

>>> pressureObject = h5file.get_node("/columns", "pressure")
>>> print("Info on the object:", repr(pressureObject))
Info on the object: /columns/pressure (Array(3,)) 'Pressure column selection'
 atom := Float64Atom(shape=(), dflt=0.0)
 maindim := 0
 flavor := 'numpy'
 byteorder := 'little'
 chunkshape := None
>>> print(" shape: ==>", pressureObject.shape)
 shape: ==> (3,)
>>> print(" title: ==>", pressureObject.title)
 title: ==> Pressure column selection
>>> print(" atom: ==>", pressureObject.atom)
 atom: ==> Float64Atom(shape=(), dflt=0.0)

Observe that we have used the File.get_node() method of the File class
to access a node in the tree, instead of the natural naming method. Both are
useful, and depending on the context you will prefer one or the other.
File.get_node() has the advantage that it can get a node from the
pathname string (as in this example) and can also act as a filter to show
only nodes in a particular location that are instances of class classname.
In general, however, I consider natural naming to be more elegant and easier
to use, especially if you are using the name completion capability present in
interactive console. Try this powerful combination of natural naming and
completion capabilities present in most Python consoles, and see how pleasant
it is to browse the object tree (well, as pleasant as such an activity can
be).

If you look at the type attribute of the pressureObject object, you can
verify that it is a “float64” array. By looking at its shape attribute, you
can deduce that the array on disk is unidimensional and has 3 elements.
See Array or the internal doc strings for the complete Array
attribute list.

Reading data from Array objects

Once you have found the desired Array, use the read() method of the Array
object to retrieve its data:

>>> pressureArray = pressureObject.read()
>>> pressureArray
array([25., 36., 49.])
>>> print("pressureArray is an object of type:", type(pressureArray))
pressureArray is an object of type: <type 'numpy.ndarray'>
>>> nameArray = h5file.root.columns.name.read()
>>> print("nameArray is an object of type:", type(nameArray))
nameArray is an object of type: <type 'list'>
>>>
>>> print("Data on arrays nameArray and pressureArray:")
Data on arrays nameArray and pressureArray:
>>> for i in range(pressureObject.shape[0]):
... print(nameArray[i], "-->", pressureArray[i])
Particle: 5 --> 25.0
Particle: 6 --> 36.0
Particle: 7 --> 49.0

You can see that the Array.read() method returns an authentic NumPy
object for the pressureObject instance by looking at the output of the type()
call. A read() of the nameArray object instance returns a native Python list
(of strings). The type of the object saved is stored as an HDF5 attribute
(named FLAVOR) for objects on disk. This attribute is then read as Array
meta-information (accessible through in the Array.attrs.FLAVOR variable),
enabling the read array to be converted into the original object. This
provides a means to save a large variety of objects as arrays with the
guarantee that you will be able to later recover them in their original form.
See File.create_array() for a complete list of supported objects for the
Array object class.

Commiting data to tables and arrays

We have seen how to create tables and arrays and how to browse both data and
metadata in the object tree. Let’s examine more closely now one of the most
powerful capabilities of PyTables, namely, how to modify already created
tables and arrays [1]

Appending data to an existing table

Now, let’s have a look at how we can add records to an existing table on
disk. Let’s use our well-known readout Table object and append some new
values to it:

>>> table = h5file.root.detector.readout
>>> particle = table.row
>>> for i in xrange(10, 15):
... particle['name'] = 'Particle: %6d' % (i)
... particle['TDCcount'] = i % 256
... particle['ADCcount'] = (i * 256) % (1 << 16)
... particle['grid_i'] = i
... particle['grid_j'] = 10 - i
... particle['pressure'] = float(i*i)
... particle['energy'] = float(particle['pressure'] ** 4)
... particle['idnumber'] = i * (2 ** 34)
... particle.append()
>>> table.flush()

It’s the same method we used to fill a new table. PyTables knows that this
table is on disk, and when you add new records, they are appended to the end
of the table [2].

If you look carefully at the code you will see that we have used the
table.row attribute to create a table row and fill it with the new values.
Each time that its append() method is called, the actual row is committed to
the output buffer and the row pointer is incremented to point to the next
table record. When the buffer is full, the data is saved on disk, and the
buffer is reused again for the next cycle.

Caveat emptor: Do not forget to always call the flush() method after a
write operation, or else your tables will not be updated!

Let’s have a look at some rows in the modified table and verify that our new
data has been appended:

>>> for r in table.iterrows():
... print("%-16s | %11.1f | %11.4g | %6d | %6d | %8d \|" % \\
... (r['name'], r['pressure'], r['energy'], r['grid_i'], r['grid_j'],
... r['TDCcount']))
Particle: 0 | 0.0 | 0 | 0 | 10 | 0 |
Particle: 1 | 1.0 | 1 | 1 | 9 | 1 |
Particle: 2 | 4.0 | 256 | 2 | 8 | 2 |
Particle: 3 | 9.0 | 6561 | 3 | 7 | 3 |
Particle: 4 | 16.0 | 6.554e+04 | 4 | 6 | 4 |
Particle: 5 | 25.0 | 3.906e+05 | 5 | 5 | 5 |
Particle: 6 | 36.0 | 1.68e+06 | 6 | 4 | 6 |
Particle: 7 | 49.0 | 5.765e+06 | 7 | 3 | 7 |
Particle: 8 | 64.0 | 1.678e+07 | 8 | 2 | 8 |
Particle: 9 | 81.0 | 4.305e+07 | 9 | 1 | 9 |
Particle: 10 | 100.0 | 1e+08 | 10 | 0 | 10 |
Particle: 11 | 121.0 | 2.144e+08 | 11 | -1 | 11 |
Particle: 12 | 144.0 | 4.3e+08 | 12 | -2 | 12 |
Particle: 13 | 169.0 | 8.157e+08 | 13 | -3 | 13 |
Particle: 14 | 196.0 | 1.476e+09 | 14 | -4 | 14 |

Modifying data in tables

Ok, until now, we’ve been only reading and writing (appending) values to our
tables. But there are times that you need to modify your data once you have
saved it on disk (this is specially true when you need to modify the real
world data to adapt your goals ;).
Let’s see how we can modify the values that were saved in our existing tables.
We will start modifying single cells in the first row of the Particle table:

>>> print("Before modif-->", table[0])
Before modif--> (0, 0, 0.0, 0, 10, 0L, 'Particle: 0', 0.0)
>>> table.cols.TDCcount[0] = 1
>>> print("After modifying first row of ADCcount-->", table[0])
After modifying first row of ADCcount--> (0, 1, 0.0, 0, 10, 0L, 'Particle: 0', 0.0)
>>> table.cols.energy[0] = 2
>>> print("After modifying first row of energy-->", table[0])
After modifying first row of energy--> (0, 1, 2.0, 0, 10, 0L, 'Particle: 0', 0.0)

We can modify complete ranges of columns as well:

>>> table.cols.TDCcount[2:5] = [2,3,4]
>>> print("After modifying slice [2:5] of TDCcount-->", table[0:5])
After modifying slice [2:5] of TDCcount-->
[(0, 1, 2.0, 0, 10, 0L, 'Particle: 0', 0.0)
 (256, 1, 1.0, 1, 9, 17179869184L, 'Particle: 1', 1.0)
 (512, 2, 256.0, 2, 8, 34359738368L, 'Particle: 2', 4.0)
 (768, 3, 6561.0, 3, 7, 51539607552L, 'Particle: 3', 9.0)
 (1024, 4, 65536.0, 4, 6, 68719476736L, 'Particle: 4', 16.0)]
>>> table.cols.energy[1:9:3] = [2,3,4]
>>> print("After modifying slice [1:9:3] of energy-->", table[0:9])
After modifying slice [1:9:3] of energy-->
[(0, 1, 2.0, 0, 10, 0L, 'Particle: 0', 0.0)
 (256, 1, 2.0, 1, 9, 17179869184L, 'Particle: 1', 1.0)
 (512, 2, 256.0, 2, 8, 34359738368L, 'Particle: 2', 4.0)
 (768, 3, 6561.0, 3, 7, 51539607552L, 'Particle: 3', 9.0)
 (1024, 4, 3.0, 4, 6, 68719476736L, 'Particle: 4', 16.0)
 (1280, 5, 390625.0, 5, 5, 85899345920L, 'Particle: 5', 25.0)
 (1536, 6, 1679616.0, 6, 4, 103079215104L, 'Particle: 6', 36.0)
 (1792, 7, 4.0, 7, 3, 120259084288L, 'Particle: 7', 49.0)
 (2048, 8, 16777216.0, 8, 2, 137438953472L, 'Particle: 8', 64.0)]

Check that the values have been correctly modified!

Hint

remember that column TDCcount is the second one, and that energy is the
third. Look for more info on modifying columns in
Column.__setitem__().

PyTables also lets you modify complete sets of rows at the same time. As a
demonstration of these capability, see the next example:

>>> table.modify_rows(start=1, step=3,
... rows=[(1, 2, 3.0, 4, 5, 6L, 'Particle: None', 8.0),
... (2, 4, 6.0, 8, 10, 12L, 'Particle: None*2', 16.0)])
2
>>> print("After modifying the complete third row-->", table[0:5])
After modifying the complete third row-->
[(0, 1, 2.0, 0, 10, 0L, 'Particle: 0', 0.0)
 (1, 2, 3.0, 4, 5, 6L, 'Particle: None', 8.0)
 (512, 2, 256.0, 2, 8, 34359738368L, 'Particle: 2', 4.0)
 (768, 3, 6561.0, 3, 7, 51539607552L, 'Particle: 3', 9.0)
 (2, 4, 6.0, 8, 10, 12L, 'Particle: None*2', 16.0)]

As you can see, the modify_rows() call has modified the rows second and fifth,
and it returned the number of modified rows.

Apart of Table.modify_rows(), there exists another method, called
Table.modify_column() to modify specific columns as well.

Finally, it exists another way of modifying tables that is generally more
handy than the described above. This new way uses the method
Row.update() of the Row instance that is attached to every table, so it
is meant to be used in table iterators. Look at the next example:

>>> for row in table.where('TDCcount <= 2'):
... row['energy'] = row['TDCcount']*2
... row.update()
>>> print("After modifying energy column (where TDCcount <=2)-->", table[0:4])
After modifying energy column (where TDCcount <=2)-->
[(0, 1, 2.0, 0, 10, 0L, 'Particle: 0', 0.0)
 (1, 2, 4.0, 4, 5, 6L, 'Particle: None', 8.0)
 (512, 2, 4.0, 2, 8, 34359738368L, 'Particle: 2', 4.0)
 (768, 3, 6561.0, 3, 7, 51539607552L, 'Particle: 3', 9.0)]

Note

The authors find this way of updating tables (i.e. using Row.update())
to be both convenient and efficient. Please make sure to use it
extensively.

Caveat emptor: Currently, Row.update() will not work (the table will
not be updated) if the loop is broken with break statement. A possible
workaround consists in manually flushing the row internal buffer by calling
row._flushModRows() just before the break statement.

Modifying data in arrays

We are going now to see how to modify data in array objects.
The basic way to do this is through the use of Array.__setitem__()
special method. Let’s see at how modify data on the pressureObject array:

>>> pressureObject = h5file.root.columns.pressure
>>> print("Before modif-->", pressureObject[:])
Before modif--> [25. 36. 49.]
>>> pressureObject[0] = 2
>>> print("First modif-->", pressureObject[:])
First modif--> [2. 36. 49.]
>>> pressureObject[1:3] = [2.1, 3.5]
>>> print("Second modif-->", pressureObject[:])
Second modif--> [2. 2.1 3.5]
>>> pressureObject[::2] = [1,2]
>>> print("Third modif-->", pressureObject[:])
Third modif--> [1. 2.1 2.]

So, in general, you can use any combination of (multidimensional) extended
slicing.

With the sole exception that you cannot use negative values for step to refer
to indexes that you want to modify. See Array.__getitem__() for more
examples on how to use extended slicing in PyTables objects.

Similarly, with an array of strings:

>>> nameObject = h5file.root.columns.name
>>> print("Before modif-->", nameObject[:])
Before modif--> ['Particle: 5', 'Particle: 6', 'Particle: 7']
>>> nameObject[0] = 'Particle: None'
>>> print("First modif-->", nameObject[:])
First modif--> ['Particle: None', 'Particle: 6', 'Particle: 7']
>>> nameObject[1:3] = ['Particle: 0', 'Particle: 1']
>>> print("Second modif-->", nameObject[:])
Second modif--> ['Particle: None', 'Particle: 0', 'Particle: 1']
>>> nameObject[::2] = ['Particle: -3', 'Particle: -5']
>>> print("Third modif-->", nameObject[:])
Third modif--> ['Particle: -3', 'Particle: 0', 'Particle: -5']

And finally... how to delete rows from a table

We’ll finish this tutorial by deleting some rows from the table we have.
Suppose that we want to delete the 5th to 9th rows (inclusive):

>>> table.remove_rows(5,10)
5

Table.remove_rows() deletes the rows in the range (start, stop). It
returns the number of rows effectively removed.

We have reached the end of this first tutorial. Don’t forget to close the
file when you finish:

>>> h5file.close()
>>> ^D
$

In Figure 2 you can see a graphical view of the
PyTables file with the datasets we have just created. In
Figure 3. General properties of the /detector/readout table. are displayed the general properties of the table
/detector/readout.

[image: ../_images/tutorial1-2-tableview.png]
Figure 2. The final version of the data file for tutorial 1.

[image: ../_images/tutorial1-general.png]
Figure 3. General properties of the /detector/readout table.

Multidimensional table cells and automatic sanity checks

Now it’s time for a more real-life example (i.e. with errors in the code). We
will create two groups that branch directly from the root node, Particles and
Events. Then, we will put three tables in each group. In Particles we will
put tables based on the Particle descriptor and in Events, the tables based
the Event descriptor.

Afterwards, we will provision the tables with a number of records. Finally,
we will read the newly-created table /Events/TEvent3 and select some values
from it, using a comprehension list.

Look at the next script (you can find it in examples/tutorial2.py).
It appears to do all of the above, but it contains some small bugs. Note that
this Particle class is not directly related to the one defined in
last tutorial; this class is simpler (note, however, the multidimensional
columns called pressure and temperature).

We also introduce a new manner to describe a Table as a structured NumPy
dtype (or even as a dictionary), as you can see in the Event description. See
File.create_table() about the different kinds of descriptor objects that
can be passed to this method:

from tables import *
from numpy import *

Describe a particle record
class Particle(IsDescription):
 name = StringCol(itemsize=16) # 16-character string
 lati = Int32Col() # integer
 longi = Int32Col() # integer
 pressure = Float32Col(shape=(2,3)) # array of floats (single-precision)
 temperature = Float64Col(shape=(2,3)) # array of doubles (double-precision)

Native NumPy dtype instances are also accepted
Event = dtype([
 ("name" , "S16"),
 ("TDCcount" , uint8),
 ("ADCcount" , uint16),
 ("xcoord" , float32),
 ("ycoord" , float32)
])

And dictionaries too (this defines the same structure as above)
Event = {
"name" : StringCol(itemsize=16),
"TDCcount" : UInt8Col(),
"ADCcount" : UInt16Col(),
"xcoord" : Float32Col(),
"ycoord" : Float32Col(),
}

Open a file in "w"rite mode
fileh = open_file("tutorial2.h5", mode = "w")

Get the HDF5 root group
root = fileh.root

Create the groups:
for groupname in ("Particles", "Events"):
 group = fileh.create_group(root, groupname)

Now, create and fill the tables in Particles group
gparticles = root.Particles

Create 3 new tables
for tablename in ("TParticle1", "TParticle2", "TParticle3"):
 # Create a table
 table = fileh.create_table("/Particles", tablename, Particle, "Particles: "+tablename)

 # Get the record object associated with the table:
 particle = table.row

 # Fill the table with 257 particles
 for i in xrange(257):
 # First, assign the values to the Particle record
 particle['name'] = 'Particle: %6d' % (i)
 particle['lati'] = i
 particle['longi'] = 10 - i

 ########### Detectable errors start here. Play with them!
 particle['pressure'] = array(i*arange(2*3)).reshape((2,4)) # Incorrect
 #particle['pressure'] = array(i*arange(2*3)).reshape((2,3)) # Correct
 ########### End of errors

 particle['temperature'] = (i**2) # Broadcasting

 # This injects the Record values
 particle.append()

 # Flush the table buffers
 table.flush()

Now, go for Events:
for tablename in ("TEvent1", "TEvent2", "TEvent3"):
 # Create a table in Events group
 table = fileh.create_table(root.Events, tablename, Event, "Events: "+tablename)

 # Get the record object associated with the table:
 event = table.row

 # Fill the table with 257 events
 for i in xrange(257):
 # First, assign the values to the Event record
 event['name'] = 'Event: %6d' % (i)
 event['TDCcount'] = i % (1<<8) # Correct range

 ########### Detectable errors start here. Play with them!
 event['xcoor'] = float(i**2) # Wrong spelling
 #event['xcoord'] = float(i**2) # Correct spelling
 event['ADCcount'] = "sss" # Wrong type
 #event['ADCcount'] = i * 2 # Correct type
 ########### End of errors

 event['ycoord'] = float(i)**4

 # This injects the Record values
 event.append()

 # Flush the buffers
 table.flush()

Read the records from table "/Events/TEvent3" and select some
table = root.Events.TEvent3
e = [p['TDCcount'] for p in table if p['ADCcount'] < 20 and 4 <= p['TDCcount'] < 15]
print("Last record ==>", p)
print("Selected values ==>", e)
print("Total selected records ==> ", len(e))

Finally, close the file (this also will flush all the remaining buffers!)
fileh.close()

Shape checking

If you look at the code carefully, you’ll see that it won’t work. You will
get the following error.

$ python tutorial2.py
Traceback (most recent call last):
 File "tutorial2.py", line 60, in <module>
 particle['pressure'] = array(i*arange(2*3)).reshape((2,4)) # Incorrect
ValueError: total size of new array must be unchanged
Closing remaining open files: tutorial2.h5... done

This error indicates that you are trying to assign an array with an
incompatible shape to a table cell. Looking at the source, we see that we
were trying to assign an array of shape (2,4) to a pressure element, which
was defined with the shape (2,3).

In general, these kinds of operations are forbidden, with one valid
exception: when you assign a scalar value to a multidimensional column
cell, all the cell elements are populated with the value of the scalar.
For example:

particle['temperature'] = (i**2) # Broadcasting

The value i**2 is assigned to all the elements of the temperature table cell.
This capability is provided by the NumPy package and is known as
broadcasting.

Field name checking

After fixing the previous error and rerunning the program, we encounter
another error.

$ python tutorial2.py
Traceback (most recent call last):
 File "tutorial2.py", line 73, in ?
 event['xcoor'] = float(i**2) # Wrong spelling
 File "tableextension.pyx", line 1094, in tableextension.Row.__setitem__
 File "tableextension.pyx", line 127, in tableextension.get_nested_field_cache
 File "utilsextension.pyx", line 331, in utilsextension.get_nested_field
KeyError: 'no such column: xcoor'

This error indicates that we are attempting to assign a value to a
non-existent field in the event table object. By looking carefully at the
Event class attributes, we see that we misspelled the xcoord field (we wrote
xcoor instead). This is unusual behavior for Python, as normally when you
assign a value to a non-existent instance variable, Python creates a new
variable with that name. Such a feature can be dangerous when dealing with an
object that contains a fixed list of field names. PyTables checks that the
field exists and raises a KeyError if the check fails.

Data type checking

Finally, the last issue which we will find here is a TypeError exception.

$ python tutorial2.py
Traceback (most recent call last):
 File "tutorial2.py", line 75, in ?
 event['ADCcount'] = "sss" # Wrong type
 File "tableextension.pyx", line 1111, in tableextension.Row.__setitem__
TypeError: invalid type (<type 'str'>) for column ``ADCcount``

And, if we change the affected line to read:

event.ADCcount = i * 2 # Correct type

we will see that the script ends well.

You can see the structure created with this (corrected) script in
Figure 4.
In particular, note the multidimensional column cells in table
/Particles/TParticle2.

[image: ../_images/tutorial2-tableview.png]
Figure 4. Table hierarchy for tutorial 2.

Using links for more convenient access to nodes

Links are special nodes that can be used to create additional paths to your
existing nodes. PyTables supports three kinds of links: hard links, soft
links (aka symbolic links) and external links.

Hard links let the user create additional paths to access another node in the
same file, and once created, they are indistinguishable from the referred
node object, except that they have different paths in the object tree. For
example, if the referred node is, say, a Table object, then the new hard link
will become a Table object itself. From this point on, you will be able to
access the same Table object from two different paths: the original one and
the new hard link path. If you delete one path to the table, you will be
able to reach it via the other path.

Soft links are similar to hard links, but they keep their own personality.
When you create a soft link to another node, you will get a new SoftLink
object that refers to that node. However, in order to access the referred
node, you need to dereference it.

Finally, external links are like soft links, with the difference that these
are meant to point to nodes in external files instead of nodes in the same
file. They are represented by the ExternalLink class and, like soft links,
you need to dereference them in order to get access to the pointed node.

Interactive example

Now we are going to learn how to deal with links. You can find the code used
in this section in examples/links.py.

First, let’s create a file with some group structure:

>>> import tables as tb
>>> f1 = tb.open_file('links1.h5', 'w')
>>> g1 = f1.create_group('/', 'g1')
>>> g2 = f1.create_group(g1, 'g2')

Now, we will put some datasets on the /g1 and /g1/g2 groups:

>>> a1 = f1.create_carray(g1, 'a1', tb.Int64Atom(), shape=(10000,))
>>> t1 = f1.create_table(g2, 't1', {'f1': tb.IntCol(), 'f2': tb.FloatCol()})

We can start the party now. We are going to create a new group, say /gl,
where we will put our links and will start creating one hard link too:

>>> gl = f1.create_group('/', 'gl')
>>> ht = f1.create_hard_link(gl, 'ht', '/g1/g2/t1') # ht points to t1
>>> print("``%s`` is a hard link to: ``%s``" % (ht, t1))
``/gl/ht (Table(0,)) `` is a hard link to: ``/g1/g2/t1 (Table(0,)) ``

You can see how we’ve created a hard link in /gl/ht which is pointing to the
existing table in /g1/g2/t1. Have look at how the hard link is represented;
it looks like a table, and actually, it is an real table. We have two
different paths to access that table, the original /g1/g2/t1 and the new one
/gl/ht. If we remove the original path we still can reach the table by using
the new path:

>>> t1.remove()
>>> print("table continues to be accessible in: ``%s``" % f1.get_node('/gl/ht'))
table continues to be accessible in: ``/gl/ht (Table(0,)) ``

So far so good. Now, let’s create a couple of soft links:

>>> la1 = f1.create_soft_link(gl, 'la1', '/g1/a1') # la1 points to a1
>>> print("``%s`` is a soft link to: ``%s``" % (la1, la1.target))
``/gl/la1 (SoftLink) -> /g1/a1`` is a soft link to: ``/g1/a1``
>>> lt = f1.create_soft_link(gl, 'lt', '/g1/g2/t1') # lt points to t1
>>> print("``%s`` is a soft link to: ``%s``" % (lt, lt.target))
``/gl/lt (SoftLink) -> /g1/g2/t1 (dangling)`` is a soft link to: ``/g1/g2/t1``

Okay, we see how the first link /gl/la1 points to the array /g1/a1. Notice
how the link prints as a SoftLink, and how the referred node is stored in the
target instance attribute. The second link (/gt/lt) pointing to /g1/g2/t1
also has been created successfully, but by better inspecting the string
representation of it, we see that is labeled as ‘(dangling)’. Why is this?
Well, you should remember that we recently removed the /g1/g2/t1 path to
access table t1. When printing it, the object knows that it points to
nowhere and reports this.
This is a nice way to quickly know whether a soft link points to an exiting
node or not.

So, let’s re-create the removed path to t1 table:

>>> t1 = f1.create_hard_link('/g1/g2', 't1', '/gl/ht')
>>> print("``%s`` is not dangling anymore" % (lt,))
``/gl/lt (SoftLink) -> /g1/g2/t1`` is not dangling anymore

and the soft link is pointing to an existing node now.

Of course, for soft links to serve any actual purpose we need a way to get
the pointed node. It happens that soft links are callable, and that’s the
way to get the referred nodes back:

>>> plt = lt()
>>> print("dereferred lt node: ``%s``" % plt)
dereferred lt node: ``/g1/g2/t1 (Table(0,)) ``
>>> pla1 = la1()
>>> print("dereferred la1 node: ``%s``" % pla1)
dereferred la1 node: ``/g1/a1 (CArray(10000,)) ``

Now, plt is a Python reference to the t1 table while pla1 refers to the a1
array. Easy, uh?

Let’s suppose now that a1 is an array whose access speed is critical for our
application. One possible solution is to move the entire file into a faster
disk, say, a solid state disk so that access latencies can be reduced quite a
lot. However, it happens that our file is too big to fit into our shiny new
(although small in capacity) SSD disk. A solution is to copy just the a1
array into a separate file that would fit into our SSD disk. However, our
application would be able to handle two files instead of only one, adding
significantly more complexity, which is not a good thing.

External links to the rescue! As we’ve already said, external links are like
soft links, but they are designed to link objects in external files. Back to
our problem, let’s copy the a1 array into a different file:

>>> f2 = tb.open_file('links2.h5', 'w')
>>> new_a1 = a1.copy(f2.root, 'a1')
>>> f2.close() # close the other file

And now, we can remove the existing soft link and create the external link in
its place:

>>> la1.remove()
>>> la1 = f1.create_external_link(gl, 'la1', 'links2.h5:/a1')
>>> print("``%s`` is an external link to: ``%s``" % (la1, la1.target))
``/gl/la1 (ExternalLink) -> links2.h5:/a1`` is an external link to: ``links2.h5:/a1``

Let’s try dereferring it:

>>> new_a1 = la1() # dereferrencing la1 returns a1 in links2.h5
>>> print("dereferred la1 node: ``%s``" % new_a1)
dereferred la1 node: ``/a1 (CArray(10000,)) ``

Well, it seems like we can access the external node. But just to make sure
that the node is in the other file:

>>> print("new_a1 file:", new_a1._v_file.filename)
new_a1 file: links2.h5

Okay, the node is definitely in the external file. So, you won’t have to
worry about your application: it will work exactly the same no matter the
link is internal (soft) or external.

Finally, here it is a dump of the objects in the final file, just to get a
better idea of what we ended with:

>>> f1.close()
>>> exit()
$ ptdump links1.h5
/ (RootGroup) ''
/g1 (Group) ''
/g1/a1 (CArray(10000,)) ''
/gl (Group) ''
/gl/ht (Table(0,)) ''
/gl/la1 (ExternalLink) -> links2.h5:/a1
/gl/lt (SoftLink) -> /g1/g2/t1
/g1/g2 (Group) ''
/g1/g2/t1 (Table(0,)) ''

This ends this tutorial. I hope it helped you to appreciate how useful links
can be. I’m sure you will find other ways in which you can use links that
better fit your own needs.

Exercising the Undo/Redo feature

PyTables has integrated support for undoing and/or redoing actions. This
functionality lets you put marks in specific places of your hierarchy
manipulation operations, so that you can make your HDF5 file pop back
(undo) to a specific mark (for example for inspecting how your hierarchy
looked at that point). You can also go forward to a more recent marker
(redo). You can even do jumps to the marker you want using just one
instruction as we will see shortly.

You can undo/redo all the operations that are related to object tree
management, like creating, deleting, moving or renaming nodes (or complete
sub-hierarchies) inside a given object tree. You can also undo/redo
operations (i.e. creation, deletion or modification) of persistent node
attributes. However, when actions include internal modifications of
datasets (that includes Table.append, Table.modify_rows or Table.remove_rows
among others), they cannot be undone/redone currently.

This capability can be useful in many situations, like for example when doing
simulations with multiple branches. When you have to choose a path to follow
in such a situation, you can put a mark there and, if the simulation is not
going well, you can go back to that mark and start another path. Other
possible application is defining coarse-grained operations which operate in a
transactional-like way, i.e. which return the database to its previous state
if the operation finds some kind of problem while running. You can probably
devise many other scenarios where the Undo/Redo feature can be useful to you
[3].

A basic example

In this section, we are going to show the basic behavior of the Undo/Redo
feature. You can find the code used in this example in
examples/tutorial3-1.py. A somewhat more complex example will be
explained in the next section.

First, let’s create a file:

>>> import tables
>>> fileh = tables.open_file("tutorial3-1.h5", "w", title="Undo/Redo demo 1")

And now, activate the Undo/Redo feature with the method
File.enable_undo() of File:

>>> fileh.enable_undo()

From now on, all our actions will be logged internally by PyTables. Now, we
are going to create a node (in this case an Array object):

>>> one = fileh.create_array('/', 'anarray', [3,4], "An array")

Now, mark this point:

>>> fileh.mark()
1

We have marked the current point in the sequence of actions.
In addition, the mark() method has returned the identifier assigned to this
new mark, that is 1 (mark #0 is reserved for the implicit mark at the
beginning of the action log). In the next section we will see that you can
also assign a name to a mark (see File.mark() for more info on
mark()).
Now, we are going to create another array:

>>> another = fileh.create_array('/', 'anotherarray', [4,5], "Another array")

Right. Now, we can start doing funny things. Let’s say that we want to pop
back to the previous mark (that whose value was 1, do you remember?). Let’s
introduce the undo() method (see File.undo()):

>>> fileh.undo()

Fine, what do you think it happened? Well, let’s have a look at the object
tree:

>>> print(fileh)
tutorial3-1.h5 (File) 'Undo/Redo demo 1'
Last modif.: 'Tue Mar 13 11:43:55 2007'
Object Tree:
/ (RootGroup) 'Undo/Redo demo 1'
/anarray (Array(2,)) 'An array'

What happened with the /anotherarray node we’ve just created? You guess it,
it has disappeared because it was created after the mark 1. If you are
curious enough you may well ask where it has gone. Well, it has not been
deleted completely; it has been just moved into a special, hidden, group of
PyTables that renders it invisible and waiting for a chance to be reborn.

Now, unwind once more, and look at the object tree:

>>> fileh.undo()
>>> print(fileh)
tutorial3-1.h5 (File) 'Undo/Redo demo 1'
Last modif.: 'Tue Mar 13 11:43:55 2007'
Object Tree:
/ (RootGroup) 'Undo/Redo demo 1'

Oops, /anarray has disappeared as well!.
Don’t worry, it will revisit us very shortly. So, you might be somewhat lost
right now; in which mark are we?. Let’s ask the File.get_current_mark()
method in the file handler:

>>> print(fileh.get_current_mark())
0

So we are at mark #0, remember? Mark #0 is an implicit mark that is created
when you start the log of actions when calling File.enable_undo(). Fine, but
you are missing your too-young-to-die arrays. What can we do about that?
File.redo() to the rescue:

>>> fileh.redo()
>>> print(fileh)
tutorial3-1.h5 (File) 'Undo/Redo demo 1'
Last modif.: 'Tue Mar 13 11:43:55 2007'
Object Tree:
/ (RootGroup) 'Undo/Redo demo 1'
/anarray (Array(2,)) 'An array'

Great! The /anarray array has come into life again. Just check that it is
alive and well:

>>> fileh.root.anarray.read()
[3, 4]
>>> fileh.root.anarray.title
'An array'

Well, it looks pretty similar than in its previous life;
what’s more, it is exactly the same object!:

>>> fileh.root.anarray is one
True

It just was moved to the the hidden group and back again, but that’s all!
That’s kind of fun, so we are going to do the same with /anotherarray:

>>> fileh.redo()
>>> print(fileh)
tutorial3-1.h5 (File) 'Undo/Redo demo 1'
Last modif.: 'Tue Mar 13 11:43:55 2007'
Object Tree:
/ (RootGroup) 'Undo/Redo demo 1'
/anarray (Array(2,)) 'An array'
/anotherarray (Array(2,)) 'Another array'

Welcome back, /anotherarray! Just a couple of sanity checks:

>>> assert fileh.root.anotherarray.read() == [4,5]
>>> assert fileh.root.anotherarray.title == "Another array"
>>> fileh.root.anotherarray is another
True

Nice, you managed to turn your data back into life.
Congratulations! But wait, do not forget to close your action log when you
don’t need this feature anymore:

>>> fileh.disable_undo()

That will allow you to continue working with your data without actually
requiring PyTables to keep track of all your actions, and more importantly,
allowing your objects to die completely if they have to, not requiring to
keep them anywhere, and hence saving process time and space in your database
file.

A more complete example

Now, time for a somewhat more sophisticated demonstration of the Undo/Redo
feature. In it, several marks will be set in different parts of the code flow
and we will see how to jump between these marks with just one method call.
You can find the code used in this example in examples/tutorial3-2.py

Let’s introduce the first part of the code:

import tables

Create an HDF5 file
fileh = tables.open_file('tutorial3-2.h5', 'w', title='Undo/Redo demo 2')

 #'-**-**-**-**-**-**- enable undo/redo log -**-**-**-**-**-**-**-'
fileh.enable_undo()

Start undoable operations
fileh.create_array('/', 'otherarray1', [3,4], 'Another array 1')
fileh.create_group('/', 'agroup', 'Group 1')

Create a 'first' mark
fileh.mark('first')
fileh.create_array('/agroup', 'otherarray2', [4,5], 'Another array 2')
fileh.create_group('/agroup', 'agroup2', 'Group 2')

Create a 'second' mark
fileh.mark('second')
fileh.create_array('/agroup/agroup2', 'otherarray3', [5,6], 'Another array 3')

Create a 'third' mark
fileh.mark('third')
fileh.create_array('/', 'otherarray4', [6,7], 'Another array 4')
fileh.create_array('/agroup', 'otherarray5', [7,8], 'Another array 5')

You can see how we have set several marks interspersed in the code flow,
representing different states of the database. Also, note that we have
assigned names to these marks, namely ‘first’, ‘second’ and ‘third’.

Now, start doing some jumps back and forth in the states of the database:

Now go to mark 'first'
fileh.goto('first')
assert '/otherarray1' in fileh
assert '/agroup' in fileh
assert '/agroup/agroup2' not in fileh
assert '/agroup/otherarray2' not in fileh
assert '/agroup/agroup2/otherarray3' not in fileh
assert '/otherarray4' not in fileh
assert '/agroup/otherarray5' not in fileh

Go to mark 'third'
fileh.goto('third')
assert '/otherarray1' in fileh
assert '/agroup' in fileh
assert '/agroup/agroup2' in fileh
assert '/agroup/otherarray2' in fileh
assert '/agroup/agroup2/otherarray3' in fileh
assert '/otherarray4' not in fileh
assert '/agroup/otherarray5' not in fileh

Now go to mark 'second'
fileh.goto('second')
assert '/otherarray1' in fileh
assert '/agroup' in fileh
assert '/agroup/agroup2' in fileh
assert '/agroup/otherarray2' in fileh
assert '/agroup/agroup2/otherarray3' not in fileh
assert '/otherarray4' not in fileh
assert '/agroup/otherarray5' not in fileh

Well, the code above shows how easy is to jump to a certain mark in the
database by using the File.goto() method.

There are also a couple of implicit marks for going to the beginning or the
end of the saved states: 0 and -1. Going to mark #0 means go to the beginning
of the saved actions, that is, when method fileh.enable_undo() was called.
Going to mark #-1 means go to the last recorded action, that is the last
action in the code flow.

Let’s see what happens when going to the end of the action log:

Go to the end
fileh.goto(-1)
assert '/otherarray1' in fileh
assert '/agroup' in fileh
assert '/agroup/agroup2' in fileh
assert '/agroup/otherarray2' in fileh
assert '/agroup/agroup2/otherarray3' in fileh
assert '/otherarray4' in fileh
assert '/agroup/otherarray5' in fileh

Check that objects have come back to life in a sane state
assert fileh.root.otherarray1.read() == [3,4]
assert fileh.root.agroup.otherarray2.read() == [4,5]
assert fileh.root.agroup.agroup2.otherarray3.read() == [5,6]
assert fileh.root.otherarray4.read() == [6,7]
assert fileh.root.agroup.otherarray5.read() == [7,8]

Try yourself going to the beginning of the action log (remember, the mark #0)
and check the contents of the object tree.

We have nearly finished this demonstration. As always, do not forget to close
the action log as well as the database:

#'-**-**-**-**-**-**- disable undo/redo log -**-**-**-**-**-**-**-'
fileh.disable_undo()
Close the file
fileh.close()

You might want to check other examples on Undo/Redo feature that appear in
examples/undo-redo.py.

Using enumerated types

PyTables includes support for handling enumerated types. Those types are
defined by providing an exhaustive set or list of possible, named values
for a variable of that type. Enumerated variables of the same type are
usually compared between them for equality and sometimes for order, but are
not usually operated upon.

Enumerated values have an associated name and concrete value. Every name
is unique and so are concrete values. An enumerated variable always takes the
concrete value, not its name. Usually, the concrete value is not used
directly, and frequently it is entirely irrelevant. For the same reason, an
enumerated variable is not usually compared with concrete values out of its
enumerated type. For that kind of use, standard variables and constants are
more adequate.

PyTables provides the Enum (see The Enum class) class to provide
support for enumerated types. Each instance of Enum is an enumerated type (or
enumeration). For example, let us create an enumeration of colors

All these examples can be found in examples/enum.py:

>>> import tables
>>> colorList = ['red', 'green', 'blue', 'white', 'black']
>>> colors = tables.Enum(colorList)

Here we used a simple list giving the names of enumerated values, but we left
the choice of concrete values up to the Enum class. Let us see the enumerated
pairs to check those values:

>>> print("Colors:", [v for v in colors])
Colors: [('blue', 2), ('black', 4), ('white', 3), ('green', 1), ('red', 0)]

Names have been given automatic integer concrete values. We can iterate over
the values in an enumeration, but we will usually be more interested in
accessing single values. We can get the concrete value associated with a name
by accessing it as an attribute or as an item (the later can be useful for
names not resembling Python identifiers):

>>> print("Value of 'red' and 'white':", (colors.red, colors.white))
Value of 'red' and 'white': (0, 3)
>>> print("Value of 'yellow':", colors.yellow)
Value of 'yellow':
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File ".../tables/misc/enum.py", line 230, in __getattr__
 raise AttributeError(*ke.args)
AttributeError: no enumerated value with that name: 'yellow'
>>>
>>> print("Value of 'red' and 'white':", (colors['red'], colors['white']))
Value of 'red' and 'white': (0, 3)
>>> print("Value of 'yellow':", colors['yellow'])
Value of 'yellow':
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File ".../tables/misc/enum.py", line 189, in __getitem__
 raise KeyError("no enumerated value with that name: %r" % (name,))
KeyError: "no enumerated value with that name: 'yellow'"

See how accessing a value that is not in the enumeration raises the
appropriate exception. We can also do the opposite action and get the name
that matches a concrete value by using the __call__() method of Enum:

>>> print("Name of value %s:" % colors.red, colors(colors.red))
Name of value 0: red
>>> print("Name of value 1234:", colors(1234))
Name of value 1234:
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File ".../tables/misc/enum.py", line 320, in __call__
 raise ValueError(
ValueError: no enumerated value with that concrete value: 1234

You can see what we made as using the enumerated type to convert a concrete
value into a name in the enumeration. Of course, values out of the
enumeration can not be converted.

Enumerated columns

Columns of an enumerated type can be declared by using the EnumCol (see
The Col class and its descendants) class. To see how this works, let us open a new
PyTables file and create a table to collect the simulated results of a
probabilistic experiment. In it, we have a bag full of colored balls; we take
a ball out and annotate the time of extraction and the color of the ball:

>>> h5f = tables.open_file('enum.h5', 'w')
>>> class BallExt(tables.IsDescription):
... ballTime = tables.Time32Col()
... ballColor = tables.EnumCol(colors, 'black', base='uint8')
>>> tbl = h5f.create_table('/', 'extractions', BallExt, title="Random ball extractions")
>>>

We declared the ballColor column to be of the enumerated type colors, with a
default value of black. We also stated that we are going to store concrete
values as unsigned 8-bit integer values [4].

Let us use some random values to fill the table:

>>> import time
>>> import random
>>> now = time.time()
>>> row = tbl.row
>>> for i in range(10):
... row['ballTime'] = now + i
... row['ballColor'] = colors[random.choice(colorList)] # notice this
... row.append()
>>>

Notice how we used the __getitem__() call of colors to get the concrete value
to store in ballColor. You should know that this way of appending values to a
table does automatically check for the validity on enumerated values.
For instance:

>>> row['ballTime'] = now + 42
>>> row['ballColor'] = 1234
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "tableextension.pyx", line 1086, in tableextension.Row.__setitem__
 File ".../tables/misc/enum.py", line 320, in __call__
 "no enumerated value with that concrete value: %r" % (value,))
ValueError: no enumerated value with that concrete value: 1234

But take care that this check is only performed here and not in other
methods such as tbl.append() or tbl.modify_rows(). Now, after flushing the
table we can see the results of the insertions:

>>> tbl.flush()
>>> for r in tbl:
... ballTime = r['ballTime']
... ballColor = colors(r['ballColor']) # notice this
... print("Ball extracted on %d is of color %s." % (ballTime, ballColor))
Ball extracted on 1173785568 is of color green.
Ball extracted on 1173785569 is of color black.
Ball extracted on 1173785570 is of color white.
Ball extracted on 1173785571 is of color black.
Ball extracted on 1173785572 is of color black.
Ball extracted on 1173785573 is of color red.
Ball extracted on 1173785574 is of color green.
Ball extracted on 1173785575 is of color red.
Ball extracted on 1173785576 is of color white.
Ball extracted on 1173785577 is of color white.

As a last note, you may be wondering how to have access to the enumeration
associated with ballColor once the file is closed and reopened. You can call
tbl.get_enum(‘ballColor’) (see Table.get_enum()) to get the enumeration
back.

Enumerated arrays

EArray and VLArray leaves can also be declared to store enumerated values by
means of the EnumAtom (see The Atom class and its descendants) class, which works very
much like EnumCol for tables. Also, Array leaves can be used to open native
HDF enumerated arrays.

Let us create a sample EArray containing ranges of working days as
bidimensional values:

>>> workingDays = {'Mon': 1, 'Tue': 2, 'Wed': 3, 'Thu': 4, 'Fri': 5}
>>> dayRange = tables.EnumAtom(workingDays, 'Mon', base='uint16')
>>> earr = h5f.create_earray('/', 'days', dayRange, (0, 2), title="Working day ranges")
>>> earr.flavor = 'python'

Nothing surprising, except for a pair of details. In the first place, we use
a dictionary instead of a list to explicitly set concrete values in the
enumeration. In the second place, there is no explicit Enum instance created!
Instead, the dictionary is passed as the first argument to the constructor of
EnumAtom. If the constructor gets a list or a dictionary instead of an
enumeration, it automatically builds the enumeration from it.

Now let us feed some data to the array:

>>> wdays = earr.get_enum()
>>> earr.append([(wdays.Mon, wdays.Fri), (wdays.Wed, wdays.Fri)])
>>> earr.append([(wdays.Mon, 1234)])

Please note that, since we had no explicit Enum instance, we were forced to
use get_enum() (see EArray methods) to get it from the array (we
could also have used dayRange.enum). Also note that we were able to append
an invalid value (1234). Array methods do not check the validity of
enumerated values.

Finally, we will print the contents of the array:

>>> for (d1, d2) in earr:
... print("From %s to %s (%d days)." % (wdays(d1), wdays(d2), d2-d1+1))
From Mon to Fri (5 days).
From Wed to Fri (3 days).
Traceback (most recent call last):
 File "<stdin>", line 2, in <module>
 File ".../tables/misc/enum.py", line 320, in __call__
 "no enumerated value with that concrete value: %r" % (value,))
ValueError: no enumerated value with that concrete value: 1234

That was an example of operating on concrete values. It also showed how the
value-to-name conversion failed because of the value not belonging to the
enumeration.

Now we will close the file, and this little tutorial on enumerated types is
done:

>>> h5f.close()

Dealing with nested structures in tables

PyTables supports the handling of nested structures (or nested datatypes, as
you prefer) in table objects, allowing you to define arbitrarily nested
columns.

An example will clarify what this means. Let’s suppose that you want to group
your data in pieces of information that are more related than others pieces
in your table, So you may want to tie them up together in order to have your
table better structured but also be able to retrieve and deal with these
groups more easily.

You can create such a nested substructures by just nesting subclasses of
IsDescription. Let’s see one example (okay, it’s a bit silly, but will serve
for demonstration purposes):

from tables import *

class Info(IsDescription):
 """A sub-structure of Test"""
 _v_pos = 2 # The position in the whole structure
 name = StringCol(10)
 value = Float64Col(pos=0)

colors = Enum(['red', 'green', 'blue'])

class NestedDescr(IsDescription):
 """A description that has several nested columns"""
 color = EnumCol(colors, 'red', base='uint32')
 info1 = Info()

 class info2(IsDescription):
 _v_pos = 1
 name = StringCol(10)
 value = Float64Col(pos=0)

 class info3(IsDescription):
 x = Float64Col(dflt=1)
 y = UInt8Col(dflt=1)

The root class is NestedDescr and both info1 and info2 are substructures of
it. Note how info1 is actually an instance of the class Info that was defined
prior to NestedDescr. Also, there is a third substructure, namely info3 that
hangs from the substructure info2. You can also define positions of
substructures in the containing object by declaring the special class
attribute _v_pos.

Nested table creation

Now that we have defined our nested structure, let’s create a nested table,
that is a table with columns that contain other subcolumns:

>>> fileh = open_file("nested-tut.h5", "w")
>>> table = fileh.create_table(fileh.root, 'table', NestedDescr)

Done! Now, we have to feed the table with some values. The problem is how we
are going to reference to the nested fields. That’s easy, just use a ‘/’
character to separate names in different nested levels. Look at this:

>>> row = table.row
>>> for i in range(10):
... row['color'] = colors[['red', 'green', 'blue'][i%3]]
... row['info1/name'] = "name1-%s" % i
... row['info2/name'] = "name2-%s" % i
... row['info2/info3/y'] = i
... # All the rest will be filled with defaults
... row.append()
>>> table.flush()
>>> table.nrows
10

You see? In order to fill the fields located in the substructures, we just
need to specify its full path in the table hierarchy.

Reading nested tables

Now, what happens if we want to read the table? What kind oft data container
will we get? Well, it’s worth trying it:

>>> nra = table[::4]
>>> nra
array([(((1.0, 0), 'name2-0', 0.0), ('name1-0', 0.0), 0L),
 (((1.0, 4), 'name2-4', 0.0), ('name1-4', 0.0), 1L),
 (((1.0, 8), 'name2-8', 0.0), ('name1-8', 0.0), 2L)],
 dtype=[('info2', [('info3', [('x', '>f8'), ('y', '\|u1')]),
 ('name', '\|S10'), ('value', '>f8')]),
 ('info1', [('name', '\|S10'), ('value', '>f8')]),
 ('color', '>u4')])

What we got is a NumPy array with a compound, nested datatype (its dtype is
a list of name-datatype tuples). We read one row for each four in the table,
giving a result of three rows.

You can make use of the above object in many different ways.
For example, you can use it to append new data to the existing table object:

>>> table.append(nra)
>>> table.nrows
13

Or, to create new tables:

>>> table2 = fileh.create_table(fileh.root, 'table2', nra)
>>> table2[:]
array([(((1.0, 0), 'name2-0', 0.0), ('name1-0', 0.0), 0L),
 (((1.0, 4), 'name2-4', 0.0), ('name1-4', 0.0), 1L),
 (((1.0, 8), 'name2-8', 0.0), ('name1-8', 0.0), 2L)],
 dtype=[('info2', [('info3', [('x', '<f8'), ('y', '\|u1')]),
 ('name', '\|S10'), ('value', '<f8')]),
 ('info1', [('name', '\|S10'), ('value', '<f8')]),
 ('color', '<u4')])

Finally, we can select nested values that fulfill some condition:

>>> names = [x['info2/name'] for x in table if x['color'] == colors.red]
>>> names
['name2-0', 'name2-3', 'name2-6', 'name2-9', 'name2-0']

Note that the row accessor does not provide the natural naming feature, so
you have to completely specify the path of your desired columns in order to
reach them.

Using Cols accessor

We can use the cols attribute object (see The Cols class) of the table
so as to quickly access the info located in the interesting substructures:

>>> table.cols.info2[1:5]
array([((1.0, 1), 'name2-1', 0.0), ((1.0, 2), 'name2-2', 0.0),
 ((1.0, 3), 'name2-3', 0.0), ((1.0, 4), 'name2-4', 0.0)],
 dtype=[('info3', [('x', '<f8'), ('y', '\|u1')]), ('name', '\|S10'),
 ('value', '<f8')])

Here, we have made use of the cols accessor to access to the info2
substructure and an slice operation to get access to the subset of data we
were interested in; you probably have recognized the natural naming approach
here. We can continue and ask for data in info3 substructure:

>>> table.cols.info2.info3[1:5]
array([(1.0, 1), (1.0, 2), (1.0, 3), (1.0, 4)],
 dtype=[('x', '<f8'), ('y', '\|u1')])

You can also use the _f_col method to get a handler for a column:

>>> table.cols._f_col('info2')
/table.cols.info2 (Cols), 3 columns
 info3 (Cols(), Description)
 name (Column(), \|S10)
 value (Column(), float64)

Here, you’ve got another Cols object handler because info2 was a nested
column. If you select a non-nested column, you will get a regular Column
instance:

>>> table.cols._f_col('info2/info3/y')
/table.cols.info2.info3.y (Column(), uint8, idx=None)

To sum up, the cols accessor is a very handy and powerful way to access data
in your nested tables. Don’t be afraid of using it, specially when doing
interactive work.

Accessing meta-information of nested tables

Tables have an attribute called description which points to an instance of
the Description class (see The Description class) and is useful to
discover different meta-information about table data.

Let’s see how it looks like:

>>> table.description
{
 "info2": {
 "info3": {
 "x": Float64Col(shape=(), dflt=1.0, pos=0),
 "y": UInt8Col(shape=(), dflt=1, pos=1)},
 "name": StringCol(itemsize=10, shape=(), dflt='', pos=1),
 "value": Float64Col(shape=(), dflt=0.0, pos=2)},
 "info1": {
 "name": StringCol(itemsize=10, shape=(), dflt='', pos=0),
 "value": Float64Col(shape=(), dflt=0.0, pos=1)},
 "color": EnumCol(enum=Enum({'blue': 2, 'green': 1, 'red': 0}), dflt='red',
 base=UInt32Atom(shape=(), dflt=0), shape=(), pos=2)}

As you can see, it provides very useful information on both the formats and
the structure of the columns in your table.

This object also provides a natural naming approach to access to subcolumns
metadata:

>>> table.description.info1
{"name": StringCol(itemsize=10, shape=(), dflt='', pos=0),
 "value": Float64Col(shape=(), dflt=0.0, pos=1)}
>>> table.description.info2.info3
{"x": Float64Col(shape=(), dflt=1.0, pos=0),
 "y": UInt8Col(shape=(), dflt=1, pos=1)}

There are other variables that can be interesting for you:

>>> table.description._v_nested_names
[('info2', [('info3', ['x', 'y']), 'name', 'value']),
 ('info1', ['name', 'value']), 'color']
>>> table.description.info1._v_nested_names
['name', 'value']

_v_nested_names provides the names of the columns as well as its structure.
You can see that there are the same attributes for the different levels of
the Description object, because the levels are also Description objects
themselves.

There is a special attribute, called _v_nested_descr, that can be useful to
create nested structured arrays that imitate the structure of the table (or a
subtable thereof):

>>> import numpy
>>> table.description._v_nested_descr
[('info2', [('info3', [('x', '()f8'), ('y', '()u1')]), ('name', '()S10'),
 ('value', '()f8')]), ('info1', [('name', '()S10'), ('value', '()f8')]),
 ('color', '()u4')]
>>> numpy.rec.array(None, shape=0,
 dtype=table.description._v_nested_descr)
recarray([],
 dtype=[('info2', [('info3', [('x', '>f8'), ('y', '|u1')]),
 ('name', '|S10'), ('value', '>f8')]),
 ('info1', [('name', '|S10'), ('value', '>f8')]),
 ('color', '>u4')])
>>> numpy.rec.array(None, shape=0,
 dtype=table.description.info2._v_nested_descr)
recarray([],
 dtype=[('info3', [('x', '>f8'), ('y', '|u1')]), ('name', '|S10'),
 ('value', '>f8')])

You can see a simple example on how to create an array with NumPy.

Finally, there is a special iterator of the Description class, called _f_walk
that is able to return you the different columns of the table:

>>> for coldescr in table.description._f_walk():
... print("column-->",coldescr)
column--> Description([('info2', [('info3', [('x', '()f8'), ('y', '()u1')]),
 ('name', '()S10'), ('value', '()f8')]),
 ('info1', [('name', '()S10'), ('value', '()f8')]),
 ('color', '()u4')])
column--> EnumCol(enum=Enum({'blue': 2, 'green': 1, 'red': 0}), dflt='red',
 base=UInt32Atom(shape=(), dflt=0), shape=(), pos=2)
column--> Description([('info3', [('x', '()f8'), ('y', '()u1')]), ('name', '()S10'),
 ('value', '()f8')])
column--> StringCol(itemsize=10, shape=(), dflt='', pos=1)
column--> Float64Col(shape=(), dflt=0.0, pos=2)
column--> Description([('name', '()S10'), ('value', '()f8')])
column--> StringCol(itemsize=10, shape=(), dflt='', pos=0)
column--> Float64Col(shape=(), dflt=0.0, pos=1)
column--> Description([('x', '()f8'), ('y', '()u1')])
column--> Float64Col(shape=(), dflt=1.0, pos=0)
column--> UInt8Col(shape=(), dflt=1, pos=1)

See the The Description class for the complete listing of attributes
and methods of Description.

Well, this is the end of this tutorial. As always, do not forget to close
your files:

>>> fileh.close()

Finally, you may want to have a look at your resulting data file.

$ ptdump -d nested-tut.h5
/ (RootGroup) ''
/table (Table(13,)) ''
 Data dump:
[0] (((1.0, 0), 'name2-0', 0.0), ('name1-0', 0.0), 0L)
[1] (((1.0, 1), 'name2-1', 0.0), ('name1-1', 0.0), 1L)
[2] (((1.0, 2), 'name2-2', 0.0), ('name1-2', 0.0), 2L)
[3] (((1.0, 3), 'name2-3', 0.0), ('name1-3', 0.0), 0L)
[4] (((1.0, 4), 'name2-4', 0.0), ('name1-4', 0.0), 1L)
[5] (((1.0, 5), 'name2-5', 0.0), ('name1-5', 0.0), 2L)
[6] (((1.0, 6), 'name2-6', 0.0), ('name1-6', 0.0), 0L)
[7] (((1.0, 7), 'name2-7', 0.0), ('name1-7', 0.0), 1L)
[8] (((1.0, 8), 'name2-8', 0.0), ('name1-8', 0.0), 2L)
[9] (((1.0, 9), 'name2-9', 0.0), ('name1-9', 0.0), 0L)
[10] (((1.0, 0), 'name2-0', 0.0), ('name1-0', 0.0), 0L)
[11] (((1.0, 4), 'name2-4', 0.0), ('name1-4', 0.0), 1L)
[12] (((1.0, 8), 'name2-8', 0.0), ('name1-8', 0.0), 2L)
/table2 (Table(3,)) ''
 Data dump:
[0] (((1.0, 0), 'name2-0', 0.0), ('name1-0', 0.0), 0L)
[1] (((1.0, 4), 'name2-4', 0.0), ('name1-4', 0.0), 1L)
[2] (((1.0, 8), 'name2-8', 0.0), ('name1-8', 0.0), 2L)

Most of the code in this section is also available in
examples/nested-tut.py.

All in all, PyTables provides a quite comprehensive toolset to cope with
nested structures and address your classification needs.
However, caveat emptor, be sure to not nest your data too deeply or you will
get inevitably messed interpreting too intertwined lists, tuples and
description objects.

Other examples in PyTables distribution

Feel free to examine the rest of examples in directory examples/, and
try to understand them. We have written several practical sample scripts to
give you an idea of the PyTables capabilities, its way of dealing with HDF5
objects, and how it can be used in the real world.

	[1]	Appending data to arrays is also supported, but you need to create
special objects called EArray (see The EArray class for more
info).

	[2]	Note that you can append not only scalar values to tables,
but also fully multidimensional array objects.

	[3]	You can even hide nodes temporarily. Will you be able to find out how?

	[4]	In fact, only integer values are supported right now, but
this may change in the future.

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables User’s Guide

Library Reference

PyTables implements several classes to represent the different nodes in the
object tree. They are named File, Group, Leaf, Table, Array, CArray, EArray,
VLArray and UnImplemented. Another one allows the user to complement the
information on these different objects; its name is AttributeSet. Finally,
another important class called IsDescription allows to build a Table record
description by declaring a subclass of it. Many other classes are defined in
PyTables, but they can be regarded as helpers whose goal is mainly to declare
the data type properties of the different first class objects and will be
described at the end of this chapter as well.

An important function, called open_file is responsible to create, open or append
to files. In addition, a few utility functions are defined to guess if the user
supplied file is a PyTables or HDF5 file. These are called is_pytables_file()
and is_hdf5_file(), respectively. There exists also a function called
which_lib_version() that informs about the versions of the underlying C libraries
(for example, HDF5 or Zlib) and another called print_versions() that prints all
the versions of the software that PyTables relies on. Finally, test() lets you
run the complete test suite from a Python console interactively.

	Top-level variables and functions
	Global variables

	Global functions

	File manipulation class
	The File Class

	Hierarchy definition classes
	The Node class

	The Group class

	The Leaf class

	Structured storage classes
	The Table class

	Homogenous storage classes
	The Array class

	The CArray class

	The EArray class

	The VLArray class

	Link classes
	The Link class

	The SoftLink class

	The ExternalLink class

	Declarative classes
	The Atom class and its descendants

	The Col class and its descendants

	The IsDescription class

	Description helper functions

	The AttributeSet class

	Helper classes
	The Filters class

	The Index class

	The IndexArray class

	The Enum class

	The UnImplemented class

	The Unknown class

	Exceptions module

	General purpose expression evaluator class
	The Expr class

	Filenode Module
	Module constants

	Module functions

	The RawPyTablesIO base class

	The ROFileNode class

	The RAFileNode class

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables User’s Guide

 	Library Reference

Top-level variables and functions

Global variables

Global functions

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables User’s Guide

 	Library Reference

File manipulation class

The File Class

File properties

File methods - file handling

File methods - hierarchy manipulation

File methods - tree traversal

File methods - Undo/Redo support

File methods - attribute handling

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables User’s Guide

 	Library Reference

Hierarchy definition classes

The Node class

Node instance variables - location dependent

Node instance variables - location independent

Node instance variables - attribute shorthands

Node methods - hierarchy manipulation

Node methods - attribute handling

The Group class

Group properties

Group methods

Important

Caveat: The following methods are documented for completeness, and they
can be used without any problem. However, you should use the high-level
counterpart methods in the File class (see The File Class, because
they are most used in documentation and examples, and are a bit more
powerful than those exposed here.

The following methods are provided in addition to those in
Node (see The Node class):

Group special methods

Following are described the methods that automatically trigger actions when a
Group instance is accessed in a special way.

This class defines the __setattr__(), __getattr__() and
__delattr__() methods, and they set, get and delete ordinary Python
attributes as normally intended. In addition to that, __getattr__()
allows getting child nodes by their name for the sake of easy interaction
on the command line, as long as there is no Python attribute with the same
name. Groups also allow the interactive completion (when using readline) of
the names of child nodes. For instance:

get a Python attribute
nchild = group._v_nchildren

Add a Table child called 'table' under 'group'.
h5file.create_table(group, 'table', my_description)
table = group.table # get the table child instance
group.table = 'foo' # set a Python attribute

(PyTables warns you here about using the name of a child node.)
foo = group.table # get a Python attribute
del group.table # delete a Python attribute
table = group.table # get the table child instance again

The Leaf class

Leaf properties

	
Leaf.size_in_memory

	The size of this leaf’s data in bytes when it is fully loaded into
memory.

Leaf instance variables - aliases

The following are just easier-to-write aliases to their Node (see
The Node class) counterparts (indicated between parentheses):

Leaf methods

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables User’s Guide

 	Library Reference

Structured storage classes

The Table class

Table properties

Table methods - reading

Table methods - writing

Table methods - querying

Table methods - other

The Description class

Description methods

The Row class

Row methods

Row special methods

The Cols class

Cols properties

Cols methods

The Column class

Column instance variables

Column methods

Column special methods

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables User’s Guide

 	Library Reference

Homogenous storage classes

The Array class

Array instance variables

	
Array.atom

	An Atom (see The Atom class and its descendants) instance representing the type
and shape of the atomic objects to be saved.

	
Array.nrow

	On iterators, this is the index of the current row.

Array methods

Array special methods

The following methods automatically trigger actions when an Array
instance is accessed in a special way (e.g. array[2:3,...,::2] will be
equivalent to a call to
array.__getitem__((slice(2, 3, None), Ellipsis, slice(None, None, 2)))).

The CArray class

The EArray class

EArray methods

The VLArray class

VLArray properties

VLArray methods

VLArray special methods

The following methods automatically trigger actions when a VLArray
instance is accessed in a special way (e.g., vlarray[2:5] will be equivalent
to a call to vlarray.__getitem__(slice(2, 5, None)).

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables User’s Guide

 	Library Reference

Link classes

The Link class

Link instance variables

Link methods

The following methods are useful for copying, moving, renaming and removing
links.

The SoftLink class

SoftLink special methods

The following methods are specific for dereferrencing and representing soft
links.

The ExternalLink class

ExternalLink methods

ExternalLink special methods

The following methods are specific for dereferrencing and representing
external links.

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables User’s Guide

 	Library Reference

Declarative classes

In this section a series of classes that are meant to
declare datatypes that are required for creating
primary PyTables datasets are described.

The Atom class and its descendants

Atom properties

Atom methods

Atom factory methods

Atom Sub-classes

Pseudo atoms

Now, there come three special classes, ObjectAtom, VLStringAtom and
VLUnicodeAtom, that actually do not descend from Atom, but which goal is so
similar that they should be described here. Pseudo-atoms can only be used with
VLArray datasets (see The VLArray class), and they do not support
multidimensional values, nor multiple values per row.

They can be recognised because they also have kind, type and shape attributes,
but no size, itemsize or dflt ones. Instead, they have a base atom which
defines the elements used for storage.

See examples/vlarray1.py and examples/vlarray2.py for further
examples on VLArray datasets, including object serialization and string
management.

ObjectAtom

VLStringAtom

VLUnicodeAtom

The Col class and its descendants

Col instance variables

In addition to the variables that they inherit from the Atom class, Col
instances have the following attributes.

	
Col._v_pos

	The relative position of this column with regard to its column
siblings.

Col factory methods

Col sub-classes

The IsDescription class

Description helper functions

The AttributeSet class

AttributeSet properties

AttributeSet methods

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables User’s Guide

 	Library Reference

Helper classes

This section describes some classes that do not fit in any other
section and that mainly serve for ancillary purposes.

The Filters class

Filters methods

The Index class

Index instance variables

	
tables.index.Index.nelements

	The number of currently indexed rows for this column.

Index methods

Index special methods

The IndexArray class

The Enum class

Enum special methods

The UnImplemented class

The Unknown class

Exceptions module

In the exceptions module exceptions and warnings that are specific
to PyTables are declared.

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables User’s Guide

 	Library Reference

General purpose expression evaluator class

The Expr class

Expr methods

Expr special methods

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables User’s Guide

 	Library Reference

Filenode Module

Module constants

Module functions

The RawPyTablesIO base class

RawPyTablesIO attributes

RawPyTablesIO methods

The ROFileNode class

ROFileNode attributes

ROFileNode methods

The RAFileNode class

RAFileNode attributes

RAFileNode methods

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables User’s Guide

Optimization tips

... durch planmässiges Tattonieren.

[... through systematic, palpable experimentation.]

Johann Karl Friedrich Gauss [asked how he came upon his theorems]

On this chapter, you will get deeper knowledge of PyTables internals.
PyTables has many tunable features so that you can improve the performance of
your application. If you are planning to deal with really large data, you
should read carefully this section in order to learn how to get an important
efficiency boost for your code. But if your datasets are small (say, up to
10 MB) or your number of nodes is contained (up to 1000), you should not
worry about that as the default parameters in PyTables are already tuned for
those sizes (although you may want to adjust them further anyway). At any
rate, reading this chapter will help you in your life with PyTables.

Understanding chunking

The underlying HDF5 library that is used by PyTables allows for certain
datasets (the so-called chunked datasets) to take the data in bunches of a
certain length, named chunks, and write them on disk as a whole, i.e. the
HDF5 library treats chunks as atomic objects and disk I/O is always made in
terms of complete chunks. This allows data filters to be defined by the
application to perform tasks such as compression, encryption, check-summing,
etc. on entire chunks.

HDF5 keeps a B-tree in memory that is used to map chunk structures on disk.
The more chunks that are allocated for a dataset the larger the B-tree.
Large B-trees take memory and cause file storage overhead as well as more
disk I/O and higher contention forthe metadata cache. Consequently, it’s
important to balance between memory and I/O overhead (small B-trees) and time
to access data (big B-trees).

In the next couple of sections, you will discover how to inform PyTables
about the expected size of your datasets for allowing a sensible computation
of the chunk sizes. Also, you will be presented some experiments so that you
can get a feeling on the consequences of manually specifying the chunk size.
Although doing this latter is only reserved to experienced people, these
benchmarks may allow you to understand more deeply the chunk size
implications and let you quickly start with the fine-tuning of this important
parameter.

Informing PyTables about expected number of rows in tables or arrays

PyTables can determine a sensible chunk size to your dataset size if you
helps it by providing an estimation of the final number of rows for an
extensible leaf [1]. You should provide this information at leaf creation
time by passing this value to the expectedrows argument of the
File.create_table() method or File.create_earray() method (see
The EArray class). For VLArray leaves, you must pass the expected size
in MBytes by using the argument expectedsizein MB of
File.create_vlarray() (see The VLArray class) instead.

When your leaf size is bigger than 10 MB (take this figure only as a
reference, not strictly), by providing this guess you will be optimizing the
access to your data. When the table or array size is larger than, say 100MB,
you are strongly suggested to provide such a guess; failing to do that may
cause your application to do very slow I/O operations and to demand huge
amounts of memory. You have been warned!

Fine-tuning the chunksize

Warning

This section is mostly meant for experts. If you are a beginner, you
must know that setting manually the chunksize is a potentially dangerous
action.

Most of the time, informing PyTables about the extent of your dataset is
enough. However, for more sophisticated applications, when one has special
requirements for doing the I/O or when dealing with really large datasets,
you should really understand the implications of the chunk size in order to
be able to find the best value for your own application.

You can specify the chunksize for every chunked dataset in PyTables by
passing the chunkshape argument to the corresponding constructors. It is
important to point out that chunkshape is not exactly the same thing than a
chunksize; in fact, the chunksize of a dataset can be computed multiplying
all the dimensions of the chunkshape among them and multiplying the outcome
by the size of the atom.

We are going to describe a series of experiments where an EArray of 15 GB is
written with different chunksizes, and then it is accessed in both sequential
(i.e. first element 0, then element 1 and so on and so forth until the data
is exhausted) and random mode (i.e. single elements are read randomly all
through the dataset). These benchmarks have been carried out with
PyTables 2.1 on a machine with an Intel Core2 processor @ 3 GHz and a RAID-0
made of two SATA disks spinning at 7200 RPM, and using GNU/Linux with an XFS
filesystem. The script used for the benchmarks is available in
bench/optimal-chunksize.py.

In figures Figure 1,
Figure 2, Figure 3
and Figure 4, you can see how the chunksize
affects different aspects, like creation time, file sizes, sequential read
time and random read time. So, if you properly inform PyTables about the
extent of your datasets, you will get an automatic chunksize value (256 KB in
this case) that is pretty optimal for most of uses. However, if what you
want is, for example, optimize the creation time when using the
Zlib compressor, you may want to reduce the chunksize to 32 KB (see
Figure 1). Or, if your goal is to optimize the
sequential access time for an dataset compressed with Blosc, you may want to
increase the chunksize to 512 KB (see Figure 3).

You will notice that, by manually specifying the chunksize of a leave you
will not normally get a drastic increase in performance, but at least, you
have the opportunity to fine-tune such an important parameter for improve
performance.

[image: ../_images/create-chunksize-15GB.png]
Figure 1. Creation time per element for a 15 GB EArray and different
chunksizes.

[image: ../_images/filesizes-chunksize-15GB.png]
Figure 2. File sizes for a 15 GB EArray and different chunksizes.

[image: ../_images/seq-chunksize-15GB.png]
Figure 3. Sequential access time per element for a 15 GB EArray and
different chunksizes.

[image: ../_images/random-chunksize-15GB.png]
Figure 4. Random access time per element for a 15 GB EArray and
different chunksizes.

Finally, it is worth noting that adjusting the chunksize can be specially
important if you want to access your dataset by blocks of certain dimensions.
In this case, it is normally a good idea to set your chunkshape to be the
same than these dimensions; you only have to be careful to not end with a too
small or too large chunksize. As always, experimenting prior to pass your
application into production is your best ally.

Accelerating your searches

Note

Many of the explanations and plots in this section and the forthcoming
ones still need to be updated to include Blosc (see
[BLOSC]), the new and powerful compressor added in
PyTables 2.2 series. You should expect it to be the fastest compressor
among all the described here, and its use is strongly recommended
whenever you need extreme speed and not a very high compression ratio.

Searching in tables is one of the most common and time consuming operations
that a typical user faces in the process of mining through his data. Being
able to perform queries as fast as possible will allow more opportunities for
finding the desired information quicker and also allows to deal with larger
datasets.

PyTables offers many sort of techniques so as to speed-up the search process
as much as possible and, in order to give you hints to use them based, a
series of benchmarks have been designed and carried out. All the results
presented in this section have been obtained with synthetic, random data and
using PyTables 2.1. Also, the tests have been conducted on a machine with an
Intel Core2 (64-bit) @ 3 GHz processor with RAID-0 disk storage (made of four
spinning disks @ 7200 RPM), using GNU/Linux with an XFS filesystem. The
script used for the benchmarks is available in bench/indexed_search.py.
As your data, queries and platform may be totally different for your case,
take this just as a guide because your mileage may vary (and will vary).

In order to be able to play with tables with a number of rows as large as
possible, the record size has been chosen to be rather small (24 bytes). Here
it is its definition:

class Record(tables.IsDescription):
 col1 = tables.Int32Col()
 col2 = tables.Int32Col()
 col3 = tables.Float64Col()
 col4 = tables.Float64Col()

In the next sections, we will be optimizing the times for a relatively
complex query like this:

result = [row['col2'] for row in table if (
 ((row['col4'] >= lim1 and row['col4'] < lim2) or
 ((row['col2'] > lim3 and row['col2'] < lim4])) and
 ((row['col1']+3.1*row['col2']+row['col3']*row['col4']) > lim5)
)]

(for future reference, we will call this sort of queries regular queries).
So, if you want to see how to greatly improve the time taken to run queries
like this, keep reading.

In-kernel searches

PyTables provides a way to accelerate data selections inside of a single
table, through the use of the Table methods - querying iterator and
related query methods. This mode of selecting data is called in-kernel.
Let’s see an example of an in-kernel query based on the regular one
mentioned above:

result = [row['col2'] for row in table.where(
 '''(((col4 >= lim1) & (col4 < lim2)) |
 ((col2 > lim3) & (col2 < lim4)) &
 ((col1+3.1*col2+col3*col4) > lim5))''')]

This simple change of mode selection can improve search times quite a lot and
actually make PyTables very competitive when compared against typical
relational databases as you can see in Figure 5
and Figure 6.

[image: ../_images/Q7-10m-noidx.png]
Figure 5. Times for non-indexed complex queries in a small table with
10 millions of rows: the data fits in memory.

By looking at Figure 5 you can see how in the
case that table data fits easily in memory, in-kernel searches on
uncompressed tables are generally much faster (10x) than standard queries as
well as PostgreSQL (5x). Regarding compression, we can see how Zlib
compressor actually slows down the performance of in-kernel queries by a
factor 3.5x; however, it remains faster than PostgreSQL (40%).
On his hand, LZO compressor only decreases the performance by a 75% with
respect to uncompressed in-kernel queries and is still a lot faster than
PostgreSQL (3x). Finally, one can observe that, for low selectivity queries
(large number of hits), PostgreSQL performance degrades quite steadily, while
in PyTables this slow down rate is significantly smaller. The reason of this
behaviour is not entirely clear to the authors, but the fact is clearly
reproducible in our benchmarks.

But, why in-kernel queries are so fast when compared with regular ones?.
The answer is that in regular selection mode the data for all the rows in
table has to be brought into Python space so as to evaluate the condition and
decide if the corresponding field should be added to the result list. On the
contrary, in the in-kernel mode, the condition is passed to the PyTables
kernel (hence the name), written in C, and evaluated there at full C speed
(with the help of the integrated Numexpr package, see
[NUMEXPR]), so that the only values that are brought to
Python space are the rows that fulfilled the condition. Hence, for
selections that only have a relatively small number of hits (compared with
the total amount of rows), the savings are very large. It is also
interesting to note the fact that, although for queries with a large number
of hits the speed-up is not as high, it is still very important.

On the other hand, when the table is too large to fit in memory (see
Figure 6), the difference in speed between
regular and in-kernel is not so important, but still significant (2x). Also,
and curiously enough, large tables compressed with Zlib offers slightly
better performance (around 20%) than uncompressed ones; this is because the
additional CPU spent by the uncompressor is compensated by the savings in
terms of net I/O (one has to read less actual data from disk). However, when
using the extremely fast LZO compressor, it gives a clear advantage over
Zlib, and is up to 2.5x faster than not using compression at all. The reason
is that LZO decompression speed is much faster than Zlib, and that allows
PyTables to read the data at full disk speed (i.e. the bottleneck is in the
I/O subsystem, not in the CPU). In this case the compression rate is around
2.5x, and this is why the data can be read 2.5x faster. So, in general,
using the LZO compressor is the best way to ensure best reading/querying
performance for out-of-core datasets (more about how compression affects
performance in Compression issues).

[image: ../_images/Q8-1g-noidx.png]
Figure 6. Times for non-indexed complex queries in a large table with 1
billion of rows: the data does not fit in memory.

Furthermore, you can mix the in-kernel and regular selection modes for
evaluating arbitrarily complex conditions making use of external functions.
Look at this example:

result = [row['var2']
 for row in table.where('(var3 == "foo") & (var1 <= 20)')
 if your_function(row['var2'])]

Here, we use an in-kernel selection to choose rows according to the values
of the var3 and var1 fields. Then, we apply a regular selection to
complete the query. Of course, when you mix the in-kernel and regular
selection modes you should pass the most restrictive condition to the
in-kernel part, i.e. to the where() iterator. In situations where it is
not clear which is the most restrictive condition, you might want to
experiment a bit in order to find the best combination.

However, since in-kernel condition strings allow rich expressions allowing
the coexistence of multiple columns, variables, arithmetic operations and
many typical functions, it is unlikely that you will be forced to use
external regular selections in conditions of small to medium complexity.
See Condition Syntax for more information on in-kernel condition
syntax.

Indexed searches

When you need more speed than in-kernel selections can offer you, PyTables
offers a third selection method, the so-called indexed mode (based on the
highly efficient OPSI indexing engine). In this mode, you have to decide
which column(s) you are going to apply your selections over, and index them.
Indexing is just a kind of sorting operation over a column, so that searches
along such a column (or columns) will look at this sorted information by
using a binary search which is much faster than the sequential search
described in the previous section.

You can index the columns you want by calling the Column.create_index()
method on an already created table. For example:

indexrows = table.cols.var1.create_index()
indexrows = table.cols.var2.create_index()
indexrows = table.cols.var3.create_index()

will create indexes for all var1, var2 and var3 columns.

After you have indexed a series of columns, the PyTables query optimizer will
try hard to discover the usable indexes in a potentially complex expression.
However, there are still places where it cannot determine that an index can
be used. See below for examples where the optimizer can safely determine if
an index, or series of indexes, can be used or not.

Example conditions where an index can be used:

	var1 >= “foo” (var1 is used)

	var1 >= mystr (var1 is used)

	(var1 >= “foo”) & (var4 > 0.0) (var1 is used)

	(“bar” <= var1) & (var1 < “foo”) (var1 is used)

	((“bar” <= var1) & (var1 < “foo”)) & (var4 > 0.0) (var1 is used)

	(var1 >= “foo”) & (var3 > 10) (var1 and var3 are used)

	(var1 >= “foo”) | (var3 > 10) (var1 and var3 are used)

	~(var1 >= “foo”) | ~(var3 > 10) (var1 and var3 are used)

Example conditions where an index can not be used:

	var4 > 0.0 (var4 is not indexed)

	var1 != 0.0 (range has two pieces)

	~((“bar” <= var1) & (var1 < “foo”)) & (var4 > 0.0) (negation of a complex boolean expression)

Note

From PyTables 2.3 on, several indexes can be used in a single query.

Note

If you want to know for sure whether a particular query will use indexing
or not (without actually running it), you are advised to use the
Table.will_query_use_indexing() method.

One important aspect of the new indexing in PyTables (>= 2.3) is that it has
been designed from the ground up with the goal of being capable to
effectively manage very large tables. To this goal, it sports a wide
spectrum of different quality levels (also called optimization levels) for
its indexes so that the user can choose the best one that suits her needs
(more or less size, more or less performance).

In Figure 7, you can see that the times to index
columns in tables can be really short. In particular, the time to index a
column with 1 billion rows (1 Gigarow) with the lowest optimization level is
less than 4 minutes while indexing the same column with full optimization (so
as to get a completely sorted index or CSI) requires around 1 hour. These
are rather competitive figures compared with a relational database (in this
case, PostgreSQL 8.3.1, which takes around 1.5 hours for getting the index
done). This is because PyTables is geared towards read-only or append-only
tables and takes advantage of this fact to optimize the indexes properly. On
the contrary, most relational databases have to deliver decent performance in
other scenarios as well (specially updates and deletions), and this fact
leads not only to slower index creation times, but also to indexes taking
much more space on disk, as you can see in Figure 8.

[image: ../_images/create-index-time-int32-float64.png]
Figure 7. Times for indexing an Int32 and Float64 column.

[image: ../_images/indexes-sizes2.png]
Figure 8. Sizes for an index of a Float64 column with 1 billion of rows.

The user can select the index quality by passing the desired optlevel and
kind arguments to the Column.create_index() method. We can see in
figures Figure 7 and Figure 8
how the different optimization levels affects index time creation and index
sizes.

So, which is the effect of the different optimization levels in terms of
query times? You can see that in Figure 9.

[image: ../_images/Q8-1g-idx-optlevels.png]
Figure 9. Times for complex queries with a cold cache (mean of 5 first
random queries) for different optimization levels. Benchmark made on a machine with Intel Core2 (64-bit) @ 3 GHz processor with RAID-0 disk storage.

Of course, compression also has an effect when doing indexed queries,
although not very noticeable, as can be seen in
Figure 10.
As you can see, the difference between using no compression and using Zlib or
LZO is very little, although LZO achieves relatively better performance
generally speaking.

[image: ../_images/Q8-1g-idx-compress.png]
Figure 10. Times for complex queries with a cold cache (mean of 5 first
random queries) for different compressors.

You can find a more complete description and benchmarks about OPSI, the
indexing system of PyTables (>= 2.3) in [OPSI].

Indexing and Solid State Disks (SSD)

Lately, the long promised Solid State Disks (SSD for brevity) with decent
capacities and affordable prices have finally hit the market and will
probably stay in coexistence with the traditional spinning disks for the
foreseeable future (separately or forming hybrid systems). SSD have many
advantages over spinning disks, like much less power consumption and better
throughput. But of paramount importance, specially in the context of
accelerating indexed queries, is its very reduced latency during disk seeks,
which is typically 100x better than traditional disks.
Such a huge improvement has to have a clear impact in reducing the query
times, specially when the selectivity is high (i.e. the number of hits is
small).

In order to offer an estimate on the performance improvement we can expect
when using a low-latency SSD instead of traditional spinning disks, the
benchmark in the previous section has been repeated, but this time using a
single SSD disk instead of the four spinning disks in RAID-0. The result can
be seen in Figure 11. There one can see how
a query in a table of 1 billion of rows with 100 hits took just 1 tenth of
second when using a SSD, instead of 1 second that needed the RAID made of
spinning disks. This factor of 10x of speed-up for high-selectivity queries
is nothing to sneeze at, and should be kept in mind when really high
performance in queries is needed. It is also interesting that using
compression with LZO does have a clear advantage over when no compression is
done.

[image: ../_images/Q8-1g-idx-SSD.png]
Figure 11. Times for complex queries with a cold cache (mean of 5 first
random queries) for different disk storage (SSD vs spinning disks).

Finally, we should remark that SSD can’t compete with traditional spinning
disks in terms of capacity as they can only provide, for a similar cost,
between 1/10th and 1/50th of the size of traditional disks. It is here where
the compression capabilities of PyTables can be very helpful because both
tables and indexes can be compressed and the final space can be reduced by
typically 2x to 5x (4x to 10x when compared with traditional relational
databases).
Best of all, as already mentioned, performance is not degraded when
compression is used, but actually improved.
So, by using PyTables and SSD you can query larger datasets that otherwise
would require spinning disks when using other databases

In fact, we were unable to run the PostgreSQL benchmark in this case because
the space needed exceeded the capacity of our SSD., while allowing
improvements in the speed of indexed queries between 2x (for medium to low
selectivity queries) and 10x (for high selectivity queries).

Achieving ultimate speed: sorted tables and beyond

Warning

Sorting a large table is a costly operation. The next procedure should
only be performed when your dataset is mainly read-only and meant to be
queried many times.

When querying large tables, most of the query time is spent in locating the
interesting rows to be read from disk. In some occasions, you may have
queries whose result depends mainly of one single column (a query with only
one single condition is the trivial example), so we can guess that sorting
the table by this column would lead to locate the interesting rows in a much
more efficient way (because they would be mostly contiguous). We are going
to confirm this guess.

For the case of the query that we have been using in the previous sections:

result = [row['col2'] for row in table.where(
 '''(((col4 >= lim1) & (col4 < lim2)) |
 ((col2 > lim3) & (col2 < lim4)) &
 ((col1+3.1*col2+col3*col4) > lim5))''')]

it is possible to determine, by analysing the data distribution and the query
limits, that col4 is such a main column. So, by ordering the table by the
col4 column (for example, by specifying setting the column to sort by in the
sortby parameter in the Table.copy() method and re-indexing col2 and
col4 afterwards, we should get much faster performance for our query. This
is effectively demonstrated in Figure 12,
where one can see how queries with a low to medium (up to 10000) number of
hits can be done in around 1 tenth of second for a RAID-0 setup and in around
1 hundredth of second for a SSD disk. This represents up to more that 100x
improvement in speed with respect to the times with unsorted tables. On the
other hand, when the number of hits is large (> 1 million), the query times
grow almost linearly, showing a near-perfect scalability for both RAID-0 and
SSD setups (the sequential access to disk becomes the bottleneck in this
case).

[image: ../_images/Q8-1g-idx-sorted.png]
Figure 12. Times for complex queries with a cold cache (mean of 5 first
random queries) for unsorted and sorted tables.

Even though we have shown many ways to improve query times that should
fulfill the needs of most of people, for those needing more, you can for sure
discover new optimization opportunities. For example, querying against
sorted tables is limited mainly by sequential access to data on disk and data
compression capability, so you may want to read Fine-tuning the chunksize, for
ways on improving this aspect.
Reading the other sections of this chapter will help in finding new roads for
increasing the performance as well. You know, the limit for stopping the
optimization process is basically your imagination (but, most plausibly, your
available time ;-).

Compression issues

One of the beauties of PyTables is that it supports compression on tables and
arrays [2], although it is not used by default. Compression of big amounts
of data might be a bit controversial feature, because it has a legend of
being a very big consumer of CPU time resources. However, if you are willing
to check if compression can help not only by reducing your dataset file size
but also by improving I/O efficiency, specially when dealing with very
large datasets, keep reading.

A study on supported compression libraries

The compression library used by default is the Zlib (see
[ZLIB]). Since HDF5 requires it, you can safely use it and
expect that your HDF5 files will be readable on any other platform that has
HDF5 libraries installed. Zlib provides good compression ratio, although
somewhat slow, and reasonably fast decompression. Because of that, it is a
good candidate to be used for compressing you data.

However, in some situations it is critical to have a very good decompression
speed (at the expense of lower compression ratios or more CPU wasted on
compression, as we will see soon). In others, the emphasis is put in
achieving the maximum compression ratios, no matter which reading speed
will result. This is why support for two additional compressors has been
added to PyTables: LZO (see [LZO]) and bzip2 (see
[BZIP2]). Following the author of LZO (and checked by the
author of this section, as you will see soon), LZO offers pretty fast
compression and extremely fast decompression. In fact, LZO is so fast when
compressing/decompressing that it may well happen (that depends on your data,
of course) that writing or reading a compressed dataset is sometimes faster
than if it is not compressed at all (specially when dealing with extremely
large datasets). This fact is very important, specially if you have to deal
with very large amounts of data. Regarding bzip2, it has a reputation of
achieving excellent compression ratios, but at the price of spending much
more CPU time, which results in very low compression/decompression speeds.

Be aware that the LZO and bzip2 support in PyTables is not standard on HDF5,
so if you are going to use your PyTables files in other contexts different
from PyTables you will not be able to read them. Still, see the
ptrepack (where the ptrepack utility is described) to find a way
to free your files from LZO or bzip2 dependencies, so that you can use these
compressors locally with the warranty that you can replace them with Zlib (or
even remove compression completely) if you want to use these files with other
HDF5 tools or platforms afterwards.

In order to allow you to grasp what amount of compression can be achieved,
and how this affects performance, a series of experiments has been carried
out. All the results presented in this section (and in the next one) have
been obtained with synthetic data and using PyTables 1.3. Also, the tests
have been conducted on a IBM OpenPower 720 (e-series) with a PowerPC G5 at
1.65 GHz and a hard disk spinning at 15K RPM. As your data and platform may
be totally different for your case, take this just as a guide because your
mileage may vary. Finally, and to be able to play with tables with a number
of rows as large as possible, the record size has been chosen to be small (16
bytes). Here is its definition:

class Bench(IsDescription):
 var1 = StringCol(length=4)
 var2 = IntCol()
 var3 = FloatCol()

With this setup, you can look at the compression ratios that can be achieved
in Figure 13. As you can see, LZO is the
compressor that performs worse in this sense, but, curiously enough, there is
not much difference between Zlib and bzip2.

[image: ../_images/compressed-recordsize.png]
Figure 13. Comparison between different compression libraries.

Also, PyTables lets you select different compression levels for Zlib and
bzip2, although you may get a bit disappointed by the small improvement that
these compressors show when dealing with a combination of numbers and strings
as in our example. As a reference, see plot
Figure 14 for a comparison of the compression
achieved by selecting different levels of Zlib. Very oddly, the best
compression ratio corresponds to level 1 (!). See later for an explanation
and more figures on this subject.

[image: ../_images/compressed-recordsize-zlib.png]
Figure 14. Comparison between different compression levels of Zlib.

Have also a look at Figure 15. It shows how the
speed of writing rows evolves as the size (number of rows) of the table
grows. Even though in these graphs the size of one single row is 16 bytes,
you can most probably extrapolate these figures to other row sizes.

[image: ../_images/compressed-writing.png]
Figure 15. Writing tables with several compressors.

In Figure 16 you can see how compression
affects the reading performance. In fact, what you see in the plot is an
in-kernel selection speed, but provided that this operation is very fast
(see In-kernel searches), we can accept it as an actual read test.
Compared with the reference line without compression, the general trend here
is that LZO does not affect too much the reading performance (and in some
points it is actually better), Zlib makes speed drop to a half, while bzip2
is performing very slow (up to 8x slower).

Also, in the same Figure 16 you can
notice some strange peaks in the speed that we might be tempted to attribute
to libraries on which PyTables relies (HDF5, compressors...), or to PyTables
itself.
However, Figure 17 reveals that, if we put
the file in the filesystem cache (by reading it several times before, for
example), the evolution of the performance is much smoother. So, the most
probable explanation would be that such peaks are a consequence of the
underlying OS filesystem, rather than a flaw in PyTables (or any other
library behind it). Another consequence that can be derived from the
aforementioned plot is that LZO decompression performance is much better than
Zlib, allowing an improvement in overall speed of more than 2x, and perhaps
more important, the read performance for really large datasets (i.e. when
they do not fit in the OS filesystem cache) can be actually better than not
using compression at all. Finally, one can see that reading performance is
very badly affected when bzip2 is used (it is 10x slower than LZO and 4x than
Zlib), but this was somewhat expected anyway.

[image: ../_images/compressed-select-nocache.png]
Figure 16. Selecting values in tables with several compressors.
The file is not in the OS cache.

[image: ../_images/compressed-select-cache.png]
Figure 17. Selecting values in tables with several compressors.
The file is in the OS cache.

So, generally speaking and looking at the experiments above, you can expect
that LZO will be the fastest in both compressing and decompressing, but the
one that achieves the worse compression ratio (although that may be just OK
for many situations, specially when used with shuffling - see
Shuffling (or how to make the compression process more effective)). bzip2 is the slowest, by large, in both compressing
and decompressing, and besides, it does not achieve any better compression
ratio than Zlib. Zlib represents a balance between them: it’s somewhat slow
compressing (2x) and decompressing (3x) than LZO, but it normally achieves
better compression ratios.

Finally, by looking at the plots Figure 18,
Figure 19, and the aforementioned
Figure 14 you can see why the recommended
compression level to use for all compression libraries is 1. This is the
lowest level of compression, but as the size of the underlying HDF5 chunk
size is normally rather small compared with the size of compression buffers,
there is not much point in increasing the latter (i.e. increasing the
compression level). Nonetheless, in some situations (like for example, in
extremely large tables or arrays, where the computed chunk size can be rather
large) you may want to check, on your own, how the different compression
levels do actually affect your application.

You can select the compression library and level by setting the complib and
complevel keywords in the Filters class (see The Filters class). A
compression level of 0 will completely disable compression (the default), 1
is the less memory and CPU time demanding level, while 9 is the maximum level
and the most memory demanding and CPU intensive. Finally, have in mind that
LZO is not accepting a compression level right now, so, when using LZO, 0
means that compression is not active, and any other value means that LZO is
active.

So, in conclusion, if your ultimate goal is writing and reading as fast as
possible, choose LZO. If you want to reduce as much as possible your data,
while retaining acceptable read speed, choose Zlib. Finally, if portability
is important for you, Zlib is your best bet. So, when you want to use bzip2?
Well, looking at the results, it is difficult to recommend its use in
general, but you may want to experiment with it in those cases where you know
that it is well suited for your data pattern (for example, for dealing with
repetitive string datasets).

[image: ../_images/compressed-writing-zlib.png]
Figure 18. Writing in tables with different levels of compression.

[image: ../_images/compressed-select-cache-zlib.png]
Figure 19. Selecting values in tables with different levels of
compression. The file is in the OS cache.

Shuffling (or how to make the compression process more effective)

The HDF5 library provides an interesting filter that can leverage the results
of your favorite compressor. Its name is shuffle, and because it can
greatly benefit compression and it does not take many CPU resources (see
below for a justification), it is active by default in PyTables whenever
compression is activated (independently of the chosen compressor). It is
deactivated when compression is off (which is the default, as you already
should know). Of course, you can deactivate it if you want, but this is not
recommended.

Note

Since PyTables 3.3, a new bitshuffle filter for Blosc compressor
has been added. Contrarily to shuffle that shuffles bytes,
bitshuffle shuffles the chunk data at bit level which could
improve compression ratios at the expense of some speed penalty.
Look at the The Filters class documentation on how to
activate bitshuffle and experiment with it so as to decide if it
can be useful for you.

So, how does this mysterious filter exactly work? From the HDF5 reference
manual:

"The shuffle filter de-interlaces a block of data by reordering the
bytes. All the bytes from one consistent byte position of each data
element are placed together in one block; all bytes from a second
consistent byte position of each data element are placed together a
second block; etc. For example, given three data elements of a 4-byte
datatype stored as 012301230123, shuffling will re-order data as
000111222333. This can be a valuable step in an effective compression
algorithm because the bytes in each byte position are often closely
related to each other and putting them together can increase the
compression ratio."

In Figure 20 you can see a benchmark that
shows how the shuffle filter can help the different libraries in
compressing data. In this experiment, shuffle has made LZO compress almost 3x
more (!), while Zlib and bzip2 are seeing improvements of 2x. Once again, the
data for this experiment is synthetic, and shuffle seems to do a great work
with it, but in general, the results will vary in each case [3].

[image: ../_images/compressed-recordsize-shuffle.png]
Figure 20. Comparison between different compression libraries with and
without the shuffle filter.

At any rate, the most remarkable fact about the shuffle filter is the
relatively high level of compression that compressor filters can achieve when
used in combination with it. A curious thing to note is that the Bzip2
compression rate does not seem very much improved (less than a 40%), and what
is more striking, Bzip2+shuffle does compress quite less than Zlib+shuffle
or LZO+shuffle combinations, which is kind of unexpected. The thing that
seems clear is that Bzip2 is not very good at compressing patterns that
result of shuffle application. As always, you may want to experiment with
your own data before widely applying the Bzip2+shuffle combination in order
to avoid surprises.

Now, how does shuffling affect performance? Well, if you look at plots
Figure 21,
Figure 22 and
Figure 23, you will get a somewhat
unexpected (but pleasant) surprise. Roughly, shuffle makes the writing
process (shuffling+compressing) faster (approximately a 15% for LZO, 30% for
Bzip2 and a 80% for Zlib), which is an interesting result by itself.
But perhaps more exciting is the fact that the reading process
(unshuffling+decompressing) is also accelerated by a similar extent (a 20%
for LZO, 60% for Zlib and a 75% for Bzip2, roughly).

[image: ../_images/compressed-writing-shuffle.png]
Figure 21. Writing with different compression libraries with and
without the shuffle filter.

[image: ../_images/compressed-select-nocache-shuffle-only.png]
Figure 22. Reading with different compression libraries with the
shuffle filter. The file is not in OS cache.

[image: ../_images/compressed-select-cache-shuffle.png]
Figure 23. Reading with different compression libraries with and
without the shuffle filter. The file is in OS cache.

You may wonder why introducing another filter in the write/read pipelines
does effectively accelerate the throughput. Well, maybe data elements are
more similar or related column-wise than row-wise, i.e. contiguous elements
in the same column are more alike, so shuffling makes the job of the
compressor easier (faster) and more effective (greater ratios). As a side
effect, compressed chunks do fit better in the CPU cache (at least, the
chunks are smaller!) so that the process of unshuffle/decompress can make a
better use of the cache (i.e. reducing the number of CPU cache faults).

So, given the potential gains (faster writing and reading, but specially
much improved compression level), it is a good thing to have such a filter
enabled by default in the battle for discovering redundancy when you want to
compress your data, just as PyTables does.

Using Psyco

Psyco (see [PSYCO]) is a kind of specialized compiler for
Python that typically accelerates Python applications with no change in
source code. You can think of Psyco as a kind of just-in-time (JIT) compiler,
a little bit like Java’s, that emits machine code on the fly instead of
interpreting your Python program step by step. The result is that your
unmodified Python programs run faster.

Psyco is very easy to install and use, so in most scenarios it is worth to
give it a try. However, it only runs on Intel 386 architectures, so if you
are using other architectures, you are out of luck (and, moreover, it seems
that there are no plans to support other platforms). Besides, with the
addition of flexible (and very fast) in-kernel queries (by the way, they
cannot be optimized at all by Psyco), the use of Psyco will only help in
rather few scenarios. In fact, the only important situation that you might
benefit right now from using Psyco (I mean, in PyTables contexts) is for
speeding-up the write speed in tables when using the Row interface (see
The Row class). But again, this latter case can also be accelerated
by using the Table.append() method and building your own buffers [4].

As an example, imagine that you have a small script that reads and selects
data over a series of datasets, like this:

def read_file(filename):
 "Select data from all the tables in filename"
 fileh = open_file(filename, mode = "r")
 result = []
 for table in fileh("/", 'Table'):
 result = [p['var3'] for p in table if p['var2'] <= 20]
 fileh.close()
 return result

if __name__=="__main__":
 print(read_file("myfile.h5"))

In order to accelerate this piece of code, you can rewrite your main program
to look like:

if __name__=="__main__":
 import psyco
 psyco.bind(read_file)
 print(read_file("myfile.h5"))

That’s all! From now on, each time that you execute your Python script,
Psyco will deploy its sophisticated algorithms so as to accelerate your
calculations.

You can see in the graphs Figure 24 and
Figure 25 how much I/O speed improvement you can
get by using Psyco. By looking at this figures you can get an idea if these
improvements are of your interest or not. In general, if you are not going to
use compression you will take advantage of Psyco if your tables are medium
sized (from a thousand to a million rows), and this advantage will disappear
progressively when the number of rows grows well over one million. However if
you use compression, you will probably see improvements even beyond this
limit (see Compression issues).
As always, there is no substitute for experimentation with your own dataset.

[image: ../_images/write-medium-psyco-nopsyco-comparison.png]
Figure 24. Writing tables with/without Psyco.

[image: ../_images/read-medium-psyco-nopsyco-comparison.png]
Figure 25. Reading tables with/without Psyco.

Getting the most from the node LRU cache

One limitation of the initial versions of PyTables was that they needed to
load all nodes in a file completely before being ready to deal with them,
making the opening times for files with a lot of nodes very high and
unacceptable in many cases.

Starting from PyTables 1.2 on, a new lazy node loading schema was setup that
avoids loading all the nodes of the object tree in memory. In addition, a
new LRU cache was introduced in order to accelerate the access to already
visited nodes. This cache (one per file) is responsible for keeping up the
most recently visited nodes in memory and discard the least recent used ones.
This represents a big advantage over the old schema, not only in terms of
memory usage (as there is no need to load every node in memory), but it
also adds very convenient optimizations for working interactively like, for
example, speeding-up the opening times of files with lots of nodes, allowing
to open almost any kind of file in typically less than one tenth of second
(compare this with the more than 10 seconds for files with more than 10000
nodes in PyTables pre-1.2 era) as well as optimizing the access to frequently
visited nodes. See for more info on the advantages (and also drawbacks) of
this approach.

One thing that deserves some discussion is the election of the parameter that
sets the maximum amount of nodes to be kept in memory at any time.
As PyTables is meant to be deployed in machines that can have potentially low
memory, the default for it is quite conservative (you can look at its actual
value in the parameters.NODE_CACHE_SLOTS parameter in module
tables/parameters.py). However, if you usually need to deal with
files that have many more nodes than the maximum default, and you have a lot
of free memory in your system, then you may want to experiment in order to
see which is the appropriate value of parameters.NODE_CACHE_SLOTS that
fits better your needs.

As an example, look at the next code:

def browse_tables(filename):
 fileh = open_file(filename,'a')
 group = fileh.root.newgroup
 for j in range(10):
 for tt in fileh.walk_nodes(group, "Table"):
 title = tt.attrs.TITLE
 for row in tt:
 pass
 fileh.close()

We will be running the code above against a couple of files having a
/newgroup containing 100 tables and 1000 tables respectively. In addition,
this benchmark is run twice for two different values of the LRU cache size,
specifically 256 and 1024. You can see the results in
table.

Retrieval speed and memory consumption depending on the number of nodes in LRU cache.

 filenode - simulating a filesystem with PyTables

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables User’s Guide

filenode - simulating a filesystem with PyTables

What is filenode?

filenode is a module which enables you to create a PyTables database of nodes
which can be used like regular opened files in Python. In other words, you
can store a file in a PyTables database, and read and write it as you would
do with any other file in Python. Used in conjunction with PyTables
hierarchical database organization, you can have your database turned into an
open, extensible, efficient, high capacity, portable and metadata-rich
filesystem for data exchange with other systems (including backup purposes).

Between the main features of filenode, one can list:

	Open: Since it relies on PyTables, which in turn, sits over HDF5 (see
[HDGG1]), a standard hierarchical data format from NCSA.

	Extensible: You can define new types of nodes, and their instances will
be safely preserved (as are normal groups, leafs and attributes) by
PyTables applications having no knowledge of their types. Moreover, the set
of possible attributes for a node is not fixed, so you can define your own
node attributes.

	Efficient: Thanks to PyTables’ proven extreme efficiency on handling huge
amounts of data. filenode can make use of PyTables’ on-the-fly compression
and decompression of data.

	High capacity: Since PyTables and HDF5 are designed for massive data
storage (they use 64-bit addressing even where the platform does not
support it natively).

	Portable: Since the HDF5 format has an architecture-neutral design, and
the HDF5 libraries and PyTables are known to run under a variety of
platforms. Besides that, a PyTables database fits into a single file, which
poses no trouble for transportation.

	Metadata-rich: Since PyTables can store arbitrary key-value pairs (even
Python objects!) for every database node. Metadata may include authorship,
keywords, MIME types and encodings, ownership information, access control
lists (ACL), decoding functions and anything you can imagine!

Finding a filenode node

filenode nodes can be recognized because they have a NODE_TYPE system
attribute with a ‘file’ value. It is recommended that you use the
File.get_node_attr() method of tables.File class to get the NODE_TYPE
attribute independently of the nature (group or leaf) of the node, so you do
not need to care about.

filenode - simulating files inside PyTables

The filenode module is part of the nodes sub-package of PyTables. The
recommended way to import the module is:

>>> from tables.nodes import filenode

However, filenode exports very few symbols, so you can import * for
interactive usage. In fact, you will most probably only use the NodeType
constant and the new_node() and open_node() calls.

The NodeType constant contains the value that the NODE_TYPE system attribute
of a node file is expected to contain (‘file’, as we have seen).
Although this is not expected to change, you should use filenode.NodeType
instead of the literal ‘file’ when possible.

new_node() and open_node() are the equivalent to the Python file() call (alias
open()) for ordinary files. Their arguments differ from that of file(), but
this is the only point where you will note the difference between working
with a node file and working with an ordinary file.

For this little tutorial, we will assume that we have a PyTables database
opened for writing. Also, if you are somewhat lazy at typing sentences, the
code that we are going to explain is included in the examples/filenodes1.py
file.

You can create a brand new file with these sentences:

>>> import tables
>>> h5file = tables.open_file('fnode.h5', 'w')

Creating a new file node

Creation of a new file node is achieved with the new_node() call. You must
tell it in which PyTables file you want to create it, where in the PyTables
hierarchy you want to create the node and which will be its name. The
PyTables file is the first argument to new_node(); it will be also called the
‘host PyTables file’. The other two arguments must be given as keyword
arguments where and name, respectively.
As a result of the call, a brand new appendable and readable file node object
is returned.

So let us create a new node file in the previously opened h5file PyTables
file, named ‘fnode_test’ and placed right under the root of the database
hierarchy. This is that command:

>>> fnode = filenode.new_node(h5file, where='/', name='fnode_test')

That is basically all you need to create a file node. Simple, isn’t it? From
that point on, you can use fnode as any opened Python file (i.e. you can
write data, read data, lines of text and so on).

new_node() accepts some more keyword arguments. You can give a title to your
file with the title argument. You can use PyTables’ compression features with
the filters argument. If you know beforehand the size that your file will
have, you can give its final file size in bytes to the expectedsize argument
so that the PyTables library would be able to optimize the data access.

new_node() creates a PyTables node where it is told to. To prove it, we will
try to get the NODE_TYPE attribute from the newly created node:

>>> print(h5file.get_node_attr('/fnode_test', 'NODE_TYPE'))
file

Using a file node

As stated above, you can use the new node file as any other opened file. Let
us try to write some text in and read it:

>>> print("This is a test text line.", file=fnode)
>>> print("And this is another one.", file=fnode)
>>> print(file=fnode)
>>> fnode.write("Of course, file methods can also be used.")
>>>
>>> fnode.seek(0) # Go back to the beginning of file.
>>>
>>> for line in fnode:
... print(repr(line))
'This is a test text line.\\n'
'And this is another one.\\n'
'\\n'
'Of course, file methods can also be used.'

This was run on a Unix system, so newlines are expressed as ‘n’. In fact,
you can override the line separator for a file by setting its line_separator
property to any string you want.

While using a file node, you should take care of closing it before you
close the PyTables host file.
Because of the way PyTables works, your data it will not be at a risk, but
every operation you execute after closing the host file will fail with a
ValueError. To close a file node, simply delete it or call its close()
method:

>>> fnode.close()
>>> print(fnode.closed)
True

Opening an existing file node

If you have a file node that you created using new_node(), you can open it
later by calling open_node(). Its arguments are similar to that of file() or
open(): the first argument is the PyTables node that you want to open (i.e. a
node with a NODE_TYPE attribute having a ‘file’ value), and the second
argument is a mode string indicating how to open the file. Contrary to
file(), open_node() can not be used to create a new file node.

File nodes can be opened in read-only mode (‘r’) or in read-and-append mode
(‘a+’). Reading from a file node is allowed in both modes, but appending is
only allowed in the second one. Just like Python files do, writing data to an
appendable file places it after the file pointer if it is on or beyond the
end of the file, or otherwise after the existing data. Let us see an
example:

>>> node = h5file.root.fnode_test
>>> fnode = filenode.open_node(node, 'a+')
>>> print(repr(fnode.readline()))
'This is a test text line.\\n'
>>> print(fnode.tell())
26
>>> print("This is a new line.", file=fnode)
>>> print(repr(fnode.readline()))
''

Of course, the data append process places the pointer at the end of the file,
so the last readline() call hit EOF. Let us seek to the beginning of the file
to see the whole contents of our file:

>>> fnode.seek(0)
>>> for line in fnode:
... print(repr(line))
'This is a test text line.\\n'
'And this is another one.\\n'
'\\n'
'Of course, file methods can also be used.This is a new line.\\n'

As you can check, the last string we wrote was correctly appended at the end
of the file, instead of overwriting the second line, where the file pointer
was positioned by the time of the appending.

Adding metadata to a file node

You can associate arbitrary metadata to any open node file, regardless of its
mode, as long as the host PyTables file is writable. Of course, you could use
the set_node_attr() method of tables.File to do it directly on the proper node,
but filenode offers a much more comfortable way to do it. filenode objects
have an attrs property which gives you direct access to their corresponding
AttributeSet object.

For instance, let us see how to associate MIME type metadata to our file
node:

>>> fnode.attrs.content_type = 'text/plain; charset=us-ascii'

As simple as A-B-C. You can put nearly anything in an attribute, which opens
the way to authorship, keywords, permissions and more. Moreover, there is not
a fixed list of attributes.
However, you should avoid names in all caps or starting with ‘_’, since
PyTables and filenode may use them internally. Some valid examples:

>>> fnode.attrs.author = "Ivan Vilata i Balaguer"
>>> fnode.attrs.creation_date = '2004-10-20T13:25:25+0200'
>>> fnode.attrs.keywords_en = ["FileNode", "test", "metadata"]
>>> fnode.attrs.keywords_ca = ["FileNode", "prova", "metadades"]
>>> fnode.attrs.owner = 'ivan'
>>> fnode.attrs.acl = {'ivan': 'rw', '@users': 'r'}

You can check that these attributes get stored by running the ptdump command
on the host PyTables file.

$ ptdump -a fnode.h5:/fnode_test
/fnode_test (EArray(113,)) ''
/fnode_test.attrs (AttributeSet), 14 attributes:
[CLASS := 'EARRAY',
EXTDIM := 0,
FLAVOR := 'numpy',
NODE_TYPE := 'file',
NODE_TYPE_VERSION := 2,
TITLE := '',
VERSION := '1.2',
acl := {'ivan': 'rw', '@users': 'r'},
author := 'Ivan Vilata i Balaguer',
content_type := 'text/plain; charset=us-ascii',
creation_date := '2004-10-20T13:25:25+0200',
keywords_ca := ['FileNode', 'prova', 'metadades'],
keywords_en := ['FileNode', 'test', 'metadata'],
owner := 'ivan']

Note that filenode makes no assumptions about the meaning of your metadata,
so its handling is entirely left to your needs and imagination.

Complementary notes

You can use file nodes and PyTables groups to mimic a filesystem with files
and directories. Since you can store nearly anything you want as file
metadata, this enables you to use a PyTables file as a portable compressed
backup, even between radically different platforms. Take this with a grain of
salt, since node files are restricted in their naming (only valid Python
identifiers are valid); however, remember that you can use node titles and
metadata to overcome this limitation. Also, you may need to devise some
strategy to represent special files such as devices, sockets and such (not
necessarily using filenode).

We are eager to hear your opinion about filenode and its potential uses.
Suggestions to improve filenode and create other node types are also welcome.
Do not hesitate to contact us!

Current limitations

filenode is still a young piece of software, so it lacks some functionality.
This is a list of known current limitations:

	Node files can only be opened for read-only or read and append mode. This
should be enhanced in the future.

	Near future?

	Only binary I/O is supported currently (read/write strings of bytes)

	There is no universal newline support yet. The only new-line character
used at the moment is \n. This is likely to be improved in a near
future.

	Sparse files (files with lots of zeros) are not treated specially; if you
want them to take less space, you should be better off using compression.

These limitations still make filenode entirely adequate to work with most
binary and text files. Of course, suggestions and patches are welcome.

See Filenode Module for detailed documentation on the filenode
interface.

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Supported data types in PyTables

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables User’s Guide

Supported data types in PyTables

All PyTables datasets can handle the complete set of data types supported by
the NumPy (see [NUMPY]) package in Python.
The data types for table fields can be set via instances of the Col class and
its descendants (see The Col class and its descendants), while the data type of array
elements can be set through the use of the Atom class and its descendants
(see The Atom class and its descendants).

PyTables uses ordinary strings to represent its types, with most of them
matching the names of NumPy scalar types. Usually, a PyTables type consists
of two parts: a kind and a precision in bits.
The precision may be omitted in types with just one supported precision (like
bool) or with a non-fixed size (like string).

There are eight kinds of types supported by PyTables:

	bool: Boolean (true/false) types.
Supported precisions: 8 (default) bits.

	int: Signed integer types.
Supported precisions: 8, 16, 32 (default) and 64 bits.

	uint: Unsigned integer types.
Supported precisions: 8, 16, 32 (default) and 64 bits.

	float: Floating point types.
Supported precisions: 16, 32, 64 (default) bits and extended precision
floating point (see
note on floating point types).

	complex: Complex number types.
Supported precisions: 64 (32+32), 128 (64+64, default) bits and extended
precision complex (see
note on floating point types).

	string: Raw string types.
Supported precisions: 8-bit positive multiples.

	time: Data/time types.
Supported precisions: 32 and 64 (default) bits.

	enum: Enumerated types.
Precision depends on base type.

Note

Floating point types.

The half precision floating point data type (float16) and extended
precision ones (fload96, float128, complex192, complex256) are only
available if numpy [http://www.numpy.org] supports them on the host platform.

Also, in order to use the half precision floating point type (float16)
it is required numpy [http://www.numpy.org] >= 1.6.0.

The time and enum kinds area little bit special, since they represent HDF5
types which have no direct Python counterpart, though atoms of these kinds
have a more-or-less equivalent NumPy data type.

There are two types of time: 4-byte signed integer (time32) and 8-byte double
precision floating point (time64). Both of them reflect the number of seconds
since the Unix epoch, i.e. Jan 1 00:00:00 UTC 1970. They are stored in memory
as NumPy’s int32 and float64, respectively, and in the HDF5 file using the
H5T_TIME class. Integer times are stored on disk as such, while floating
point times are split into two signed integer values representing seconds and
microseconds (beware: smaller decimals will be lost!).

PyTables also supports HDF5 H5T_ENUM enumerations (restricted sets of
unique name and unique value pairs). The NumPy representation of an
enumerated value (an Enum, see The Enum class) depends on the concrete
base type used to store the enumeration in the HDF5 file.
Currently, only scalar integer values (both signed and unsigned) are
supported in enumerations. This restriction may be lifted when HDF5 supports
other kinds on enumerated values.

Here you have a quick reference to the complete set of supported data types:

Data types supported for array elements and tables columns in
 PyTables.

 Condition Syntax

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables User’s Guide

Condition Syntax

Conditions in PyTables are used in methods related with in-kernel and indexed
searches such as Table.where() or Table.read_where().
They are interpreted using Numexpr, a powerful package for achieving C-speed
computation of array operations (see [NUMEXPR]).

A condition on a table is just a string containing a Python expression
involving at least one column, and maybe some constants and external
variables, all combined with algebraic operators and functions. The result of
a valid condition is always a boolean array of the same length as the
table, where the i-th element is true if the value of the expression on the
i-th row of the table evaluates to true

That is the reason why multidimensional fields in a table are not supported
in conditions, since the truth value of each resulting multidimensional
boolean value is not obvious.
Usually, a method using a condition will only consider the rows where the
boolean result is true.

For instance, the condition ‘sqrt(x*x + y*y) < 1’ applied on a table with x
and y columns consisting of floating point numbers results in a boolean array
where the i-th element is true if (unsurprisingly) the value of the square
root of the sum of squares of x and y is less than 1.
The sqrt() function works element-wise, the 1 constant is adequately
broadcast to an array of ones of the length of the table for evaluation, and
the less than operator makes the result a valid boolean array. A condition
like ‘mycolumn’ alone will not usually be valid, unless mycolumn is itself a
column of scalar, boolean values.

In the previous conditions, mycolumn, x and y are examples of variables
which are associated with columns.
Methods supporting conditions do usually provide their own ways of binding
variable names to columns and other values. You can read the documentation of
Table.where() for more information on that. Also, please note that the
names None, True and False, besides the names of functions (see below) can
not be overridden, but you can always define other new names for the objects
you intend to use.

Values in a condition may have the following types:

	8-bit boolean (bool).

	32-bit signed integer (int).

	64-bit signed integer (long).

	32-bit, single-precision floating point number (float or float32).

	64-bit, double-precision floating point number (double or float64).

	2x64-bit, double-precision complex number (complex).

	Raw string of bytes (str).

Nevertheless, if the type passed is not among the above ones, it will be
silently upcasted, so you don’t need to worry too much about passing
supported types, except for the Unsigned 64 bits integer, that cannot be
upcasted to any of the supported types.

However, the types in PyTables conditions are somewhat stricter than those of
Python. For instance, the only valid constants for booleans are True and
False, and they are never automatically cast to integers. The type
strengthening also affects the availability of operators and functions.
Beyond that, the usual type inference rules apply.

Conditions support the set of operators listed below:

	Logical operators: &, |, ~.

	Comparison operators: <, <=, ==, !=, >=, >.

	Unary arithmetic operators: -.

	Binary arithmetic operators: +, -, *, /, **, %.

Types do not support all operators. Boolean values only support logical and
strict (in)equality comparison operators, while strings only support
comparisons, numbers do not work with logical operators, and complex
comparisons can only check for strict (in)equality. Unsupported operations
(including invalid castings) raise NotImplementedError exceptions.

You may have noticed the special meaning of the usually bitwise operators &,
| and ~. Because of the way Python handles the short-circuiting of logical
operators and the truth values of their operands, conditions must use the
bitwise operator equivalents instead.
This is not difficult to remember, but you must be careful because bitwise
operators have a higher precedence than logical operators. For instance,
‘a and b == c’ (a is true AND b is equal to c) is not equivalent to
‘a & b == c’ (a AND b is equal to c). The safest way to avoid confusions is
to use parentheses around logical operators, like this: ‘a & (b == c)’.
Another effect of short-circuiting is that expressions like ‘0 < x < 1’ will
not work as expected; you should use ‘(0 < x) & (x < 1)’.

All of this may be solved if Python supported overloadable boolean operators
(see PEP 335) or some kind of non-shortcircuiting boolean operators (like C’s
&&, || and !).

You can also use the following functions in conditions:

	where(bool, number1, number2):
number - number1 if the bool condition is true, number2 otherwise.

	{sin,cos,tan}(float|complex):
float|complex - trigonometric sine, cosine or tangent.

	{arcsin,arccos,arctan}(float|complex):
float|complex - trigonometric inverse sine, cosine or tangent.

	arctan2(float1, float2):
float - trigonometric inverse tangent of float1/float2.

	{sinh,cosh,tanh}(float|complex):
float|complex - hyperbolic sine, cosine or tangent.

	{arcsinh,arccosh,arctanh}(float|complex):
float|complex - hyperbolic inverse sine, cosine or tangent.

	{log,log10,log1p}(float|complex):
float|complex - natural, base-10 and log(1+x) logarithms.

	{exp,expm1}(float|complex):
float|complex - exponential and exponential minus one.

	sqrt(float|complex): float|complex - square root.

	abs(float|complex): float|complex - absolute value.

	{real,imag}(complex):
float - real or imaginary part of complex.

	complex(float, float):
complex - complex from real and imaginary parts.

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 PyTables parameter files

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables User’s Guide

PyTables parameter files

PyTables issues warnings when certain limits are exceeded. Those limits are
not intrinsic limitations of the underlying software, but rather are
proactive measures to avoid large resource consumptions. The default limits
should be enough for most of cases, and users should try to respect them.
However, in some situations, it can be convenient to increase (or decrease)
these limits.

Also, and in order to get maximum performance, PyTables implements a series
of sophisticated features, like I/O buffers or different kind of caches (for
nodes, chunks and other internal metadata). These features comes with a
default set of parameters that ensures a decent performance in most of
situations. But, as there is always a need for every case, it is handy to
have the possibility to fine-tune some of these parameters.

Because of these reasons, PyTables implements a couple of ways to change the
values of these parameters. All the tunable parameters live in the
tables/parameters.py. The user can choose to change them in the
parameter files themselves for a global and persistent change. Moreover, if
he wants a finer control, he can pass any of these parameters directly to the
tables.open_file() function, and the new parameters will only take
effect in the corresponding file (the defaults will continue to be in the
parameter files).

A description of all of the tunable parameters follows. As the defaults
stated here may change from release to release, please check with your actual
parameter files so as to know your actual default values.

Warning

Changing the next parameters may have a very bad effect in the resource
consumption and performance of your PyTables scripts.

Please be careful when touching these!

Tunable parameters in parameters.py

Recommended maximum values

Cache limits

Parameters for the different internal caches

Parameters for general cache behaviour

Warning

The next parameters will not take any effect if passed to the open_file()
function, so they can only be changed in a global way. You can change
them in the file, but this is strongly discouraged unless you know well
what you are doing.

Parameters for the I/O buffer in Leaf objects

Miscellaneous

HDF5 driver management

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Utilities

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables User’s Guide

Utilities

PyTables comes with a couple of utilities that make the life easier to the
user. One is called ptdump and lets you see the contents of a PyTables file
(or generic HDF5 file, if supported). The other one is named ptrepack that
allows to (recursively) copy sub-hierarchies of objects present in a file
into another one, changing, if desired, some of the filters applied to the
leaves during the copy process.

Normally, these utilities will be installed somewhere in your PATH during the
process of installation of the PyTables package, so that you can invoke them
from any place in your file system after the installation has successfully
finished.

ptdump

As has been said before, ptdump utility allows you look into the contents of
your PyTables files. It lets you see not only the data but also the metadata
(that is, the structure and additional information in the form of
attributes).

Usage

For instructions on how to use it, just pass the -h flag to the command:

$ ptdump -h

to see the message usage:

usage: ptdump [-h] [-v] [-d] [-a] [-s] [-c] [-i] [-R RANGE]
 filename[:nodepath]

The ptdump utility allows you look into the contents of your PyTables files.
It lets you see not only the data but also the metadata (that is, the
structure and additional information in the form of *attributes*).

positional arguments:
 filename[:nodepath] name of the HDF5 file to dump

optional arguments:
 -h, --help show this help message and exit
 -v, --verbose dump more metainformation on nodes
 -d, --dump dump data information on leaves
 -a, --showattrs show attributes in nodes (only useful when -v or -d
 are active)
 -s, --sort sort output by node name
 -c, --colinfo show info of columns in tables (only useful when -v or
 -d are active)
 -i, --idxinfo show info of indexed columns (only useful when -v or
 -d are active)
 -R RANGE, --range RANGE
 select a RANGE of rows (in the form "start,stop,step")
 during the copy of *all* the leaves. Default values
 are "None,None,1", which means a copy of all the rows.

Read on for a brief introduction to this utility.

A small tutorial on ptdump

Let’s suppose that we want to know only the structure of a file. In order
to do that, just don’t pass any flag, just the file as parameter.

$ ptdump vlarray1.h5
/ (RootGroup) ''
/vlarray1 (VLArray(3,), shuffle, zlib(1)) 'ragged array of ints'
/vlarray2 (VLArray(3,), shuffle, zlib(1)) 'ragged array of strings'

we can see that the file contains just a leaf object called vlarray1, that is
an instance of VLArray, has 4 rows, and two filters has been used in order to
create it: shuffle and zlib (with a compression level of 1).

Let’s say we want more meta-information. Just add the -v (verbose) flag:

$ ptdump -v vlarray1.h5
/ (RootGroup) ''
/vlarray1 (VLArray(3,), shuffle, zlib(1)) 'ragged array of ints'
 atom = Int32Atom(shape=(), dflt=0)
 byteorder = 'little'
 nrows = 3
 flavor = 'numpy'
/vlarray2 (VLArray(3,), shuffle, zlib(1)) 'ragged array of strings'
 atom = StringAtom(itemsize=2, shape=(), dflt='')
 byteorder = 'irrelevant'
 nrows = 3
 flavor = 'python'

so we can see more info about the atoms that are the components of the
vlarray1 dataset, i.e. they are scalars of type Int32 and with NumPy
flavor.

If we want information about the attributes on the nodes, we must add the -a
flag:

$ ptdump -va vlarray1.h5
/ (RootGroup) ''
 /._v_attrs (AttributeSet), 4 attributes:
 [CLASS := 'GROUP',
 PYTABLES_FORMAT_VERSION := '2.0',
 TITLE := '',
 VERSION := '1.0']
/vlarray1 (VLArray(3,), shuffle, zlib(1)) 'ragged array of ints'
 atom = Int32Atom(shape=(), dflt=0)
 byteorder = 'little'
 nrows = 3
 flavor = 'numpy'
 /vlarray1._v_attrs (AttributeSet), 3 attributes:
 [CLASS := 'VLARRAY',
 TITLE := 'ragged array of ints',
 VERSION := '1.3']
/vlarray2 (VLArray(3,), shuffle, zlib(1)) 'ragged array of strings'
 atom = StringAtom(itemsize=2, shape=(), dflt='')
 byteorder = 'irrelevant'
 nrows = 3
 flavor = 'python'
 /vlarray2._v_attrs (AttributeSet), 4 attributes:
 [CLASS := 'VLARRAY',
 FLAVOR := 'python',
 TITLE := 'ragged array of strings',
 VERSION := '1.3']

Let’s have a look at the real data:

$ ptdump -d vlarray1.h5
/ (RootGroup) ''
/vlarray1 (VLArray(3,), shuffle, zlib(1)) 'ragged array of ints'
 Data dump:
[0] [5 6]
[1] [5 6 7]
[2] [5 6 9 8]
/vlarray2 (VLArray(3,), shuffle, zlib(1)) 'ragged array of strings'
 Data dump:
[0] ['5', '66']
[1] ['5', '6', '77']
[2] ['5', '6', '9', '88']

We see here a data dump of the 4 rows in vlarray1 object, in the form of a
list. Because the object is a VLA, we see a different number of integers on
each row.

Say that we are interested only on a specific row range of the /vlarray1
object:

ptdump -R2,3 -d vlarray1.h5:/vlarray1
/vlarray1 (VLArray(3,), shuffle, zlib(1)) 'ragged array of ints'
 Data dump:
[2] [5 6 9 8]

Here, we have specified the range of rows between 2 and 4 (the upper limit
excluded, as usual in Python). See how we have selected only the /vlarray1
object for doing the dump (vlarray1.h5:/vlarray1).

Finally, you can mix several information at once:

$ ptdump -R2,3 -vad vlarray1.h5:/vlarray1
/vlarray1 (VLArray(3,), shuffle, zlib(1)) 'ragged array of ints'
 atom = Int32Atom(shape=(), dflt=0)
 byteorder = 'little'
 nrows = 3
 flavor = 'numpy'
 /vlarray1._v_attrs (AttributeSet), 3 attributes:
 [CLASS := 'VLARRAY',
 TITLE := 'ragged array of ints',
 VERSION := '1.3']
 Data dump:
[2] [5 6 9 8]

ptrepack

This utility is a very powerful one and lets you copy any leaf, group or
complete subtree into another file. During the copy process you are allowed
to change the filter properties if you want so. Also, in the case of
duplicated pathnames, you can decide if you want to overwrite already
existing nodes on the destination file. Generally speaking, ptrepack can be
useful in may situations, like replicating a subtree in another file, change
the filters in objects and see how affect this to the compression degree or
I/O performance, consolidating specific data in repositories or even
importing generic HDF5 files and create true PyTables counterparts.

Usage

For instructions on how to use it, just pass the -h flag to the command:

$ ptrepack -h

to see the message usage:

usage: ptrepack [-h] [-v] [-o] [-R RANGE] [--non-recursive]
 [--dest-title TITLE] [--dont-create-sysattrs]
 [--dont-copy-userattrs] [--overwrite-nodes]
 [--complevel COMPLEVEL]
 [--complib {zlib,lzo,bzip2,blosc,blosc:blosclz,blosc:lz4,blosc:lz4hc,blosc:snappy,blosc:zlib,blosc:zstd}]
 [--shuffle {0,1}] [--bitshuffle {0,1}] [--fletcher32 {0,1}]
 [--keep-source-filters] [--chunkshape CHUNKSHAPE]
 [--upgrade-flavors] [--dont-regenerate-old-indexes]
 [--sortby COLUMN] [--checkCSI] [--propindexes]
 sourcefile:sourcegroup destfile:destgroup

This utility is very powerful and lets you copy any leaf, group or complete
subtree into another file. During the copy process you are allowed to change
the filter properties if you want so. Also, in the case of duplicated
pathnames, you can decide if you want to overwrite already existing nodes on
the destination file. Generally speaking, ptrepack can be useful in may
situations, like replicating a subtree in another file, change the filters in
objects and see how affect this to the compression degree or I/O performance,
consolidating specific data in repositories or even *importing* generic HDF5
files and create true PyTables counterparts.

positional arguments:
 sourcefile:sourcegroup
 source file/group
 destfile:destgroup destination file/group

optional arguments:
 -h, --help show this help message and exit
 -v, --verbose show verbose information
 -o, --overwrite overwrite destination file
 -R RANGE, --range RANGE
 select a RANGE of rows (in the form "start,stop,step")
 during the copy of *all* the leaves. Default values
 are "None,None,1", which means a copy of all the rows.
 --non-recursive do not do a recursive copy. Default is to do it
 --dest-title TITLE title for the new file (if not specified, the source
 is copied)
 --dont-create-sysattrs
 do not create sys attrs (default is to do it)
 --dont-copy-userattrs
 do not copy the user attrs (default is to do it)
 --overwrite-nodes overwrite destination nodes if they exist. Default is
 to not overwrite them
 --complevel COMPLEVEL
 set a compression level (0 for no compression, which
 is the default)
 --complib {zlib,lzo,bzip2,blosc,blosc:blosclz,blosc:lz4,blosc:lz4hc,blosc:snappy,blosc:zlib,blosc:zstd}
 set the compression library to be used during the
 copy. Defaults to zlib
 --shuffle {0,1} activate or not the shuffle filter (default is active
 if complevel > 0)
 --bitshuffle {0,1} activate or not the bitshuffle filter (not active by
 default)
 --fletcher32 {0,1} whether to activate or not the fletcher32 filter (not
 active by default)
 --keep-source-filters
 use the original filters in source files. The default
 is not doing that if any of --complevel, --complib,
 --shuffle --bitshuffle or --fletcher32 option is
 specified
 --chunkshape CHUNKSHAPE
 set a chunkshape. Possible options are: "keep" |
 "auto" | int | tuple. A value of "auto" computes a
 sensible value for the chunkshape of the leaves
 copied. The default is to "keep" the original value
 --upgrade-flavors when repacking PyTables 1.x or PyTables 2.x files, the
 flavor of leaves will be unset. With this, such a
 leaves will be serialized as objects with the internal
 flavor ('numpy' for 3.x series)
 --dont-regenerate-old-indexes
 disable regenerating old indexes. The default is to
 regenerate old indexes as they are found
 --sortby COLUMN do a table copy sorted by the index in "column". For
 reversing the order, use a negative value in the
 "step" part of "RANGE" (see "-r" flag). Only applies
 to table objects
 --checkCSI Force the check for a CSI index for the --sortby
 column
 --propindexes propagate the indexes existing in original tables. The
 default is to not propagate them. Only applies to
 table objects

Read on for a brief introduction to this utility.

A small tutorial on ptrepack

Imagine that we have ended the tutorial 1 (see the output of
examples/tutorial1-1.py), and we want to copy our reduced data (i.e. those
datasets that hangs from the /column group) to another file. First, let’s
remember the content of the examples/tutorial1.h5:

$ ptdump tutorial1.h5
/ (RootGroup) 'Test file'
/columns (Group) 'Pressure and Name'
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'
/detector (Group) 'Detector information'
/detector/readout (Table(10,)) 'Readout example'

Now, copy the /columns to other non-existing file. That’s easy:

$ ptrepack tutorial1.h5:/columns reduced.h5

That’s all. Let’s see the contents of the newly created reduced.h5 file:

$ ptdump reduced.h5
/ (RootGroup) ''
/name (Array(3,)) 'Name column selection'
/pressure (Array(3,)) 'Pressure column selection'

so, you have copied the children of /columns group into the root of the
reduced.h5 file.

Now, you suddenly realized that what you intended to do was to copy all the
hierarchy, the group /columns itself included. You can do that by just
specifying the destination group:

$ ptrepack tutorial1.h5:/columns reduced.h5:/columns
$ ptdump reduced.h5
/ (RootGroup) ''
/name (Array(3,)) 'Name column selection'
/pressure (Array(3,)) 'Pressure column selection'
/columns (Group) ''
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'

OK. Much better. But you want to get rid of the existing nodes on the new
file. You can achieve this by adding the -o flag:

$ ptrepack -o tutorial1.h5:/columns reduced.h5:/columns
$ ptdump reduced.h5
/ (RootGroup) ''
/columns (Group) ''
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'

where you can see how the old contents of the reduced.h5 file has been
overwritten.

You can copy just one single node in the repacking operation and change its
name in destination:

$ ptrepack tutorial1.h5:/detector/readout reduced.h5:/rawdata
$ ptdump reduced.h5
/ (RootGroup) ''
/rawdata (Table(10,)) 'Readout example'
/columns (Group) ''
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'

where the /detector/readout has been copied to /rawdata in destination.

We can change the filter properties as well:

$ ptrepack --complevel=1 tutorial1.h5:/detector/readout reduced.h5:/rawdata
Problems doing the copy from 'tutorial1.h5:/detector/readout' to 'reduced.h5:/rawdata'
The error was --> tables.exceptions.NodeError: destination group \``/\`` already has a node named \``rawdata``; you may want to use the \``overwrite`` argument
The destination file looks like:
/ (RootGroup) ''
/rawdata (Table(10,)) 'Readout example'
/columns (Group) ''
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'
Traceback (most recent call last):
 File "utils/ptrepack", line 3, in ?
 main()
 File ".../tables/scripts/ptrepack.py", line 349, in main
 stats = stats, start = start, stop = stop, step = step)
 File ".../tables/scripts/ptrepack.py", line 107, in copy_leaf
 raise RuntimeError, "Please check that the node names are not
 duplicated in destination, and if so, add the --overwrite-nodes flag
 if desired."
RuntimeError: Please check that the node names are not duplicated in
destination, and if so, add the --overwrite-nodes flag if desired.

Ooops! We ran into problems: we forgot that the /rawdata pathname already
existed in destination file. Let’s add the –overwrite-nodes, as the verbose
error suggested:

$ ptrepack --overwrite-nodes --complevel=1 tutorial1.h5:/detector/readout
reduced.h5:/rawdata
$ ptdump reduced.h5
/ (RootGroup) ''
/rawdata (Table(10,), shuffle, zlib(1)) 'Readout example'
/columns (Group) ''
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'

you can check how the filter properties has been changed for the /rawdata
table. Check as the other nodes still exists.

Finally, let’s copy a slice of the readout table in origin to destination,
under a new group called /slices and with the name, for example, aslice:

$ ptrepack -R1,8,3 tutorial1.h5:/detector/readout reduced.h5:/slices/aslice
$ ptdump reduced.h5
/ (RootGroup) ''
/rawdata (Table(10,), shuffle, zlib(1)) 'Readout example'
/columns (Group) ''
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'
/slices (Group) ''
/slices/aslice (Table(3,)) 'Readout example'

note how only 3 rows of the original readout table has been copied to the new
aslice destination. Note as well how the previously nonexistent slices group
has been created in the same operation.

pt2to3

The PyTables 3.x series now follows PEP 8 [http://www.python.org/dev/peps/pep-0008/] coding standard. This makes
using PyTables more idiomatic with surrounding Python code that also adheres
to this standard. The primary way that the 2.x series was not PEP 8
compliant was with respect to variable naming conventions. Approximately 450
API variables were identified and updated for PyTables 3.x.

To ease migration, PyTables ships with a new pt2to3 command line tool.
This tool will run over a file and replace any instances of the old variable
names with the 3.x version of the name. This tool covers the overwhelming
majority of cases was used to transition the PyTables code base itself! However,
it may also accidentally also pick up variable names in 3rd party codes that
have exactly the same name as a PyTables’ variable. This is because pt2to3
was implemented using regular expressions rather than a fancier AST-based
method. By using regexes, pt2to3 works on Python and Cython code.

pt2to3 help:

usage: pt2to3 [-h] [-r] [-p] [-o OUTPUT] [-i] filename

PyTables 2.x -> 3.x API transition tool This tool displays to standard out, so
it is common to pipe this to another file: $ pt2to3 oldfile.py > newfile.py

positional arguments:
 filename path to input file.

optional arguments:
 -h, --help show this help message and exit
 -r, --reverse reverts changes, going from 3.x -> 2.x.
 -p, --no-ignore-previous
 ignores previous_api() calls.
 -o OUTPUT output file to write to.
 -i, --inplace overwrites the file in-place.

Note that pt2to3 only works on a single file, not a a directory. However,
a simple BASH script may be written to run pt2to3 over an entire directory
and all sub-directories:

#!/bin/bash
for f in $(find .)
do
 echo $f
 pt2to3 $f > temp.txt
 mv temp.txt $f
done

Note

pt2to3 uses the argparse module that is part of the
Python standard library since Python 2.7.
Users of Python 2.6 should install argparse separately
(e.g. via pip).

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 PyTables File Format

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables User’s Guide

PyTables File Format

PyTables has a powerful capability to deal with native HDF5 files created
with another tools. However, there are situations were you may want to create
truly native PyTables files with those tools while retaining fully
compatibility with PyTables format. That is perfectly possible, and in this
appendix is presented the format that you should endow to your own-generated
files in order to get a fully PyTables compatible file.

We are going to describe the 2.0 version of PyTables file format
(introduced in PyTables version 2.0). As time goes by, some changes might be
introduced (and documented here) in order to cope with new necessities.
However, the changes will be carefully pondered so as to ensure backward
compatibility whenever is possible.

A PyTables file is composed with arbitrarily large amounts of HDF5 groups
(Groups in PyTables naming scheme) and datasets (Leaves in PyTables naming
scheme). For groups, the only requirements are that they must have some
system attributes available. By convention, system attributes in PyTables
are written in upper case, and user attributes in lower case but this is not
enforced by the software. In the case of datasets, besides the mandatory
system attributes, some conditions are further needed in their storage
layout, as well as in the datatypes used in there, as we will see shortly.

As a final remark, you can use any filter as you want to create a PyTables
file, provided that the filter is a standard one in HDF5, like zlib,
shuffle or szip (although the last one can not be used from within
PyTables to create a new file, datasets compressed with szip can be read,
because it is the HDF5 library which do the decompression transparently).

Mandatory attributes for a File

The File object is, in fact, an special HDF5 group structure that is root
for the rest of the objects on the object tree. The next attributes are
mandatory for the HDF5 root group structure in PyTables files:

	CLASS: This attribute should always be set to ‘GROUP’ for group
structures.

	PYTABLES_FORMAT_VERSION: It represents the internal format version, and
currently should be set to the ‘2.0’ string.

	TITLE: A string where the user can put some description on what is this
group used for.

	VERSION: Should contains the string ‘1.0’.

Mandatory attributes for a Group

The next attributes are mandatory for group structures:

	CLASS: This attribute should always be set to ‘GROUP’ for group structures.

	TITLE: A string where the user can put some description on what is this
group used for.

	VERSION: Should contains the string ‘1.0’.

Optional attributes for a Group

The next attributes are optional for group structures:

	FILTERS: When present, this attribute contains the filter properties (a
Filters instance, see section The Filters class) that may be
inherited by leaves or groups created immediately under this group. This is
a packed 64-bit integer structure, where
	byte 0 (the least-significant byte) is the compression level
(complevel).

	byte 1 is the compression library used (complib): 0 when irrelevant, 1
for Zlib, 2 for LZO and 3 for Bzip2.

	byte 2 indicates which parameterless filters are enabled (shuffle and
fletcher32): bit 0 is for Shuffle while bit 1 is for*Fletcher32*.

	other bytes are reserved for future use.

Mandatory attributes, storage layout and supported data types for Leaves

This depends on the kind of Leaf. The format for each type follows.

Table format

Mandatory attributes

The next attributes are mandatory for table structures:

	CLASS: Must be set to ‘TABLE’.

	TITLE: A string where the user can put some description on what is this
dataset used for.

	VERSION: Should contain the string ‘2.6’.

	FIELD_X_NAME: It contains the names of the different fields. The X means
the number of the field, zero-based (beware, order do matter). You should
add as many attributes of this kind as fields you have in your records.

	FIELD_X_FILL: It contains the default values of the different fields. All
the datatypes are supported natively, except for complex types that are
currently serialized using Pickle. The X means the number of the field,
zero-based (beware, order do matter). You should add as many attributes of
this kind as fields you have in your records. These fields are meant for
saving the default values persistently and their existence is optional.

	NROWS: This should contain the number of compound data type entries in
the dataset. It must be an int data type.

Storage Layout

A Table has a dataspace with a 1-dimensional chunked layout.

Datatypes supported

The datatype of the elements (rows) of Table must be the H5T_COMPOUND
compound data type, and each of these compound components must be built
with only the next HDF5 data types classes:

	H5T_BITFIELD: This class is used to represent the Bool type. Such a type
must be build using a H5T_NATIVE_B8 datatype, followed by a HDF5
H5Tset_precision call to set its precision to be just 1 bit.

	
	H5T_INTEGER: This includes the next data types:

	
	H5T_NATIVE_SCHAR: This represents a signed char C type, but it is
effectively used to represent an Int8 type.

	H5T_NATIVE_UCHAR: This represents an unsigned char C type, but it
is effectively used to represent an UInt8 type.

	H5T_NATIVE_SHORT: This represents a short C type, and it is
effectively used to represent an Int16 type.

	H5T_NATIVE_USHORT: This represents an unsigned short C type, and it
is effectively used to represent an UInt16 type.

	H5T_NATIVE_INT: This represents an int C type, and it is
effectively used to represent an Int32 type.

	H5T_NATIVE_UINT: This represents an unsigned int C type, and it is
effectively used to represent an UInt32 type.

	H5T_NATIVE_LONG: This represents a long C type, and it is
effectively used to represent an Int32 or an Int64, depending on
whether you are running a 32-bit or 64-bit architecture.

	H5T_NATIVE_ULONG: This represents an unsigned long C type, and it
is effectively used to represent an UInt32 or an UInt64, depending on
whether you are running a 32-bit or 64-bit architecture.

	H5T_NATIVE_LLONG: This represents a long long C type (__int64, if
you are using a Windows system) and it is effectively used to represent
an Int64 type.

	H5T_NATIVE_ULLONG: This represents an unsigned long long C type
(beware: this type does not have a correspondence on Windows systems)
and it is effectively used to represent an UInt64 type.

	
	H5T_FLOAT: This includes the next datatypes:

	
	H5T_NATIVE_FLOAT: This represents a float C type and it is
effectively used to represent an Float32 type.

	H5T_NATIVE_DOUBLE: This represents a double C type and it is
effectively used to represent an Float64 type.

	
	H5T_TIME: This includes the next datatypes:

	
	H5T_UNIX_D32: This represents a POSIX time_t C type and it is
effectively used to represent a ‘Time32’ aliasing type, which
corresponds to an Int32 type.

	H5T_UNIX_D64: This represents a POSIX struct timeval C type and it
is effectively used to represent a ‘Time64’ aliasing type, which
corresponds to a Float64 type.

	H5T_STRING: The datatype used to describe strings in PyTables is H5T_C_S1
(i.e. a string C type) followed with a call to the HDF5 H5Tset_size()
function to set their length.

	H5T_ARRAY: This allows the construction of homogeneous, multidimensional
arrays, so that you can include such objects in compound records. The types
supported as elements of H5T_ARRAY data types are the ones described above.
Currently, PyTables does not support nested H5T_ARRAY types.

	H5T_COMPOUND: This allows the support for datatypes that are compounds of
compounds (this is also known as nested types along this manual).

This support can also be used for defining complex numbers. Its format is
described below:

The H5T_COMPOUND type class contains two members. Both members must have
the H5T_FLOAT atomic datatype class. The name of the first member should be
“r” and represents the real part. The name of the second member should be
“i” and represents the imaginary part. The precision property of both of
the H5T_FLOAT members must be either 32 significant bits (e.g.
H5T_NATIVE_FLOAT) or 64 significant bits (e.g. H5T_NATIVE_DOUBLE). They
represent Complex32 and Complex64 types respectively.

Array format

Mandatory attributes

The next attributes are mandatory for array structures:

	CLASS: Must be set to ‘ARRAY’.

	TITLE: A string where the user can put some description on what is this
dataset used for.

	VERSION: Should contain the string ‘2.3’.

Storage Layout

An Array has a dataspace with a N-dimensional contiguous layout (if you
prefer a chunked layout see EArray below).

Datatypes supported

The elements of Array must have either HDF5 atomic data types or a
compound data type representing a complex number. The atomic data types can
currently be one of the next HDF5 data type classes: H5T_BITFIELD,
H5T_INTEGER, H5T_FLOAT and H5T_STRING. The H5T_TIME class is also supported
for reading existing Array objects, but not for creating them. See the Table
format description in Table format for more info about these
types.

In addition to the HDF5 atomic data types, the Array format supports complex
numbers with the H5T_COMPOUND data type class.
See the Table format description in Table format for more info
about this special type.

You should note that H5T_ARRAY class datatypes are not allowed in Array
objects.

CArray format

Mandatory attributes

The next attributes are mandatory for CArray structures:

	CLASS: Must be set to ‘CARRAY’.

	TITLE: A string where the user can put some description on what is this
dataset used for.

	VERSION: Should contain the string ‘1.0’.

Storage Layout

An CArray has a dataspace with a N-dimensional chunked layout.

Datatypes supported

The elements of CArray must have either HDF5 atomic data types or a
compound data type representing a complex number. The atomic data types can
currently be one of the next HDF5 data type classes: H5T_BITFIELD,
H5T_INTEGER, H5T_FLOAT and H5T_STRING. The H5T_TIME class is also supported
for reading existing CArray objects, but not for creating them. See the Table
format description in Table format for more info about these
types.

In addition to the HDF5 atomic data types, the CArray format supports complex
numbers with the H5T_COMPOUND data type class.
See the Table format description in Table format for more info
about this special type.

You should note that H5T_ARRAY class datatypes are not allowed yet in Array
objects.

EArray format

Mandatory attributes

The next attributes are mandatory for earray structures:

	CLASS: Must be set to ‘EARRAY’.

	EXTDIM: (Integer) Must be set to the extendable dimension. Only one
extendable dimension is supported right now.

	TITLE: A string where the user can put some description on what is this
dataset used for.

	VERSION: Should contain the string ‘1.3’.

Storage Layout

An EArray has a dataspace with a N-dimensional chunked layout.

Datatypes supported

The elements of EArray are allowed to have the same data types as for the
elements in the Array format. They can be one of the HDF5 atomic data type
classes: H5T_BITFIELD, H5T_INTEGER, H5T_FLOAT, H5T_TIME or H5T_STRING, see
the Table format description in Table format for more info about
these types. They can also be a H5T_COMPOUND datatype representing a complex
number, see the Table format description in Table format.

You should note that H5T_ARRAY class data types are not allowed in EArray
objects.

VLArray format

Mandatory attributes

The next attributes are mandatory for vlarray structures:

	CLASS: Must be set to ‘VLARRAY’.

	PSEUDOATOM: This is used so as to specify the kind of pseudo-atom (see
VLArray format) for the VLArray. It can take the values
‘vlstring’, ‘vlunicode’ or ‘object’. If your atom is not a pseudo-atom then
you should not specify it.

	TITLE: A string where the user can put some description on what is this
dataset used for.

	VERSION: Should contain the string ‘1.3’.

Storage Layout

An VLArray has a dataspace with a 1-dimensional chunked layout.

Data types supported

The data type of the elements (rows) of VLArray objects must be the H5T_VLEN
variable-length (or VL for short) datatype, and the base datatype specified
for the VL datatype can be of any atomic HDF5 datatype that is listed in
the Table format description Table format. That includes the
classes:

	H5T_BITFIELD

	H5T_INTEGER

	H5T_FLOAT

	H5T_TIME

	H5T_STRING

	H5T_ARRAY

They can also be a H5T_COMPOUND data type representing a complex number, see
the Table format description in Table format for a detailed
description.

You should note that this does not include another VL datatype, or a compound
datatype that does not fit the description of a complex number. Note as well
that, for object and vlstring pseudo-atoms, the base for the VL datatype is
always a H5T_NATIVE_UCHAR (H5T_NATIVE_UINT for vlunicode). That means that
the complete row entry in the dataset has to be used in order to fully
serialize the object or the variable length string.

Optional attributes for Leaves

The next attributes are optional for leaves:

	FLAVOR: This is meant to provide the information about the kind of object
kept in the Leaf, i.e. when the dataset is read, it will be converted to
the indicated flavor.
It can take one the next string values:

	“numpy”: Read data (structures arrays, arrays, records, scalars) will
be returned as NumPy objects.

	“python”: Read data will be returned as Python lists, tuples, or
scalars.

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Bibliography

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables User’s Guide

Bibliography

	[HDFG1]

	The HDF Group. What is HDF5?. Concise description about HDF5 capabilities
and its differences from earlier versions (HDF4).
http://www.hdfgroup.org/HDF5/whatishdf5.html.

	[HDFG2]

	The HDF Group. Introduction to HDF5. Introduction to the HDF5 data model
and programming model. http://www.hdfgroup.org/HDF5/doc/H5.intro.html.

	[HDFG3]

	The HDF Group. The HDF5 table programming model. Examples on using HDF5
tables with the C API. http://www.hdfgroup.org/HDF5/Tutor/h5table.html.

	[MERTZ]

	David Mertz. Objectify. On the ‘Pythonic’ treatment of XML documents as
objects(II). Article describing XML Objectify, a Python module that
allows working with XML documents as Python objects.
Some of the ideas presented here are used in PyTables.
http://gnosis.cx/publish/programming/xml_matters_2.html.

	[CYTHON]

	Stefan Behnel, Robert Bradshaw, Dag Sverre Seljebotn, and Greg Ewing.
Cython. A language that makes writing C extensions for the Python
language as easy as Python itself. http://www.cython.org.

	[NUMPY]

	Travis Oliphant and et al. NumPy. Scientific Computing with Numerical
Python. The latest and most powerful re-implementation of Numeric to
date.
It implements all the features that can be found in Numeric and numarray,
plus a bunch of new others. In general, it is more efficient as well.
http://www.numpy.org.

	[NUMEXPR]

	David Cooke, Francesc Alted, and et al. Numexpr. Fast evaluation of array
expressions by using a vector-based virtual machine.
It is an enhaced computing kernel that is generally faster (between 1x
and 10x, depending on the kind of operations) than NumPy at evaluating
complex array expressions. http://code.google.com/p/numexpr.

	[ZLIB]

	JeanLoup Gailly and Mark Adler. zlib. A Massively Spiffy Yet Delicately
Unobtrusive Compression Library. A standard library for compression
purposes. http://www.gzip.org/zlib/.

	[LZO]

	Markus F Oberhumer. LZO. A data compression library which is suitable for
data de-/compression in real-time. It offers pretty fast compression and
decompression with reasonable compression ratio.
http://www.oberhumer.com/opensource/.

	[BZIP2]

	Julian Seward. bzip2. A high performance lossless compressor.
It offers very high compression ratios within reasonable times.
http://www.bzip.org/.

	[BLOSC]

	Francesc Alted. Blosc. A blocking, shuffling and loss-less compression
library. A compressor designed to transmit data from memory to CPU
(and back) faster than a plain memcpy().
http://www.blosc.org/.

	[GNUWIN32]

	Alexis Wilke, Jerry S., Kees Zeelenberg, and Mathias Michaelis.
GnuWin32. GNU (and other) tools ported to Win32.
GnuWin32 provides native Win32-versions of GNU tools, or tools with a
similar open source licence.
http://gnuwin32.sourceforge.net/.

	[PSYCO]

	Armin Rigo. Psyco. A Python specializing compiler.
Run existing Python software faster, with no change in your source.
http://psyco.sourceforge.net.

	[SCIPY1]

	Konrad Hinsen. Scientific Python. Collection of Python modules useful for
scientific computing.
http://dirac.cnrs-orleans.fr/ScientificPython.

	[SCIPY2]

	Eric Jones, Travis Oliphant, Pearu Peterson, and et al. SciPy.
Scientific tools for Python. SciPy supplements the popular Numeric module,
gathering a variety of high level science and engineering modules
together as a single package.
http://www.scipy.org.

	[OPTIM]

	Francesc Alted and Ivan Vilata. Optimization of file openings in PyTables.
This document explores the savings of the opening process in terms of
both CPU time and memory, due to the adoption of a LRU cache for the
nodes in the object tree.
http://www.pytables.org/docs/NewObjectTreeCache.pdf.

	[OPSI]

	Francesc Alted and Ivan Vilata. OPSI: The indexing system of PyTables 2
Professional Edition. Exhaustive description and benchmarks about the
indexing engine that comes with PyTables Pro.
http://www.pytables.org/docs/OPSI-indexes.pdf.

	[VITABLES]

	Vicent Mas. ViTables. A GUI for PyTables/HDF5 files.
It is a graphical tool for browsing and editing files in both PyTables
and HDF5 formats.
http://vitables.org.

	[GIT]

	Git is a free and open source, distributed version control system designed
to handle everything from small to very large projects with speed and
efficiency http://git-scm.com.

	[SPHINX]

	Sphinx is a tool that makes it easy to create intelligent and beautiful
documentation, written by Georg Brandl and licensed under the BSD license
http://sphinx-doc.org.

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 PyTables Cookbook

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

PyTables Cookbook

Contents

	Hints for SQL users

	PyTables & py2exe Howto (by Tommy Edvardsen)

	How to install PyTables when you’re not root (by Koen van de Sande)

	Tailoring atexit hooks

	Using your own custom data types

	SimpleTable: simple wrapper around the Table object

	In-memory HDF5 files

	Threading

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Hints for SQL users

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Cookbook

Hints for SQL users

This page is intended to be a guide to new PyTables for users who are used
to writing SQL code to access their relational databases.
It will cover the most usual SQL statements.
If you are missing a particular statement or usage example, you can ask at the
PyTables users’ list [https://lists.sourceforge.net/lists/listinfo/pytables-users] [1] for it.
If you know some examples yourself, you can also write them here!

This page is under development: you can come back frequently to check for new
examples.
Also, this is no replacement for the User’s Guide [http://www.pytables.org/docs/manual] [2];
if you don’t read the manual, you’ll be missing lots of features not available
in relational databases!

Examples in Python assume that you have imported the PyTables package like
this:

import tables

Creating a new database

RDBMs happen to have several syntaxes for creating a database.
A usual syntax is:

CREATE DATABASE database_name

In PyTables, each database goes to a different HDF5 [http://www.hdfgroup.org/HDF5] [3] file (much like
SQLite [http://www.sqlite.org] [4] or MS Access).
To create a new HDF5 [http://www.hdfgroup.org/HDF5] [3] file, you use the tables.open_file() function with
the 'w' mode (which deletes the database if it already exists), like this:

h5f = tables.open_file('database_name.h5', 'w')

In this way you get the h5f PyTables file handle (an instance of the
tables.File class), which is a concept similar to a database
connection, and a new database_name.h5 file is created in the current
directory (you can use full paths here).
You can close the handle (like you close the connection) with:

h5f.close()

This is important for PyTables to dump pending changes to the database.
In case you forget to do it, PyTables closes all open database handles for
you when you exit your program or interactive session, but it is always safer
to close your files explicitly.
If you want to use the database after closing it, you just call
open_file() again, but using the 'r+' or 'r' modes, depending on
whether you do or don’t need to modify the database, respectively.

You may use several PyTables databases simultaneously in a program, so you
must be explicit on which database you want to act upon (by using its handle).

A note on concurrency under PyTables

Unlike most RDBMs, PyTables is not intended to serve concurrent accesses to a
database.
It has no protections whatsoever against corruption for different (or even the
same) programs accessing the same database.
Opening several handles to the same database in read-only mode is safe, though.

Creating a table

PyTables supports some other datasets besides tables, and they’re not
arranged in a flat namespace, but rather into a hierarchicalé one (see an
introduction to the _ref:`object tree <ObjectTreeSection>`);
however, due to the nature of these recipes, we’ll limit ourselves to tables
in the *root group.
The basic syntax for table creation under SQL is:

CREATE TABLE table_name (
 column_name1 column_type1,
 column_name2 column_type2,
 ...
 column_nameN column_typeN
)

Table descriptions

In PyTables, one first describes the structure of a table.
PyTables allows you to reuse a description for creating several tables with
the same structure, just by using the description object (description_name
below) or getting it from a created table.
This is specially useful for creating temporary tables holding query results.

You can create a table description using a dictionary:

description_name = {
 'column_name1': colum_type1,
 'column_name2': colum_type2,
 'column_name3': colum_type3,
 ...
 'column_nameN': colum_typeN
}

or a subclass of tables.IsDescription:

class description_name(tables.IsDescription):
 column_name1 = colum_type1
 column_name2 = colum_type2
 column_name3 = colum_type3
 ...
 column_nameN = colum_typeN

Please note that dictionaries are the only way of describing structures with
names which cannot be Python identifiers.
Also, if an explicit order is desired for colums, it must be specified through
the column type declarations (see below), since dictionariy keys and class
attributes aren’t ordered.
Otherwise, columns are ordered in alphabetic increasing order.
It is important to note that PyTables doesn’t have a concept of primary or
foreign keys, so relationships between tables are left to the user.

Column type declarations

PyTables supports lots of types (including nested and multidimensional
columns).
Non-nested columns are declared through instances of tables.Col
subclasses (which you can also reuse).
These are some correspondences with SQL:

	SQL type declaration
	PyTables type declaration

	INTEGER(digits)
	tables.IntCol(itemsize)

	REAL
	tables.FloatCol()

	VARCHAR(length)
	tables.StringCol(itemsize)

	DATE
	tables.Time32Col()

	TIMESTAMP
	tables.Time64Col()

See a complete description of PyTables types.
Note that some types admit different item sizes, which are specified in
bytes.
For types with a limited set of supported item sizes, you may also use specific
subclasses which are named after the type and its precision, e.g. Int32Col
for 4-byte (32 bit) item size.

Cells in a PyTables’ table always have a value of the cell type, so there is
no NULL.
Instead, cells take a default value (zero or empty) which can be changed in
the type declaration, like this: col_name = StringCol(10, dflt='nothing')
(col_name takes the value 'nothing' if unset).
The declaration also allows you to set column order via the pos argument,
like this:

class ParticleDescription(tables.IsDescription):
 name = tables.StringCol(10, pos=1)
 x = tables.FloatCol(pos=2)
 y = tables.FloatCol(pos=3)
 temperature = tables.FloatCol(pos=4)

Using a description

Once you have a table description description_name and a writeable file
handle h5f, creating a table with that description is as easy as:

tbl = h5f.create_table('/', 'table_name', description_name)

PyTables is very object-oriented, and database is usually done through
methods of tables.File.
The first argument indicates the path where the table will be created,
i.e. the root path (HDF5 uses Unix-like paths).
The tables.File.create_table() method has many options e.g. for setting
a table title or compression properties. What you get back is an instance of
tables.Table, a handle for accessing the data in that table.

As with files, table handles can also be closed with tbl.close().
If you want to access an already created table, you can use:

tbl = h5f.get_node('/', 'table_name')

(PyTables uses the concept of node for datasets -tables and others- and
groups in the object tree) or, using natural naming:

tbl = h5f.root.table_name

Once you have created a table, you can access (and reuse) its description by
accessing the description attribute of its handle.

Creating an index

RDBMs use to allow named indexes on any set of columns (or all of them) in a
table, using a syntax like:

CREATE INDEX index_name
ON table_name (column_name1, column_name2, column_name3...)

and

DROP INDEX index_name

Indexing is supported in the versions of PyTables >= 2.3 (and in PyTablesPro).
However, indexes don’t have names and they are bound to single columns.
Following the object-oriented philosophy of PyTables, index creation is a
method (tables.Column.create_index()) of a tables.Column object
of a table, which you can access trough its cols accessor.

	::

	tbl.cols.colum_name.create_index()

For dropping an index on a column:

tbl.cols.colum_name.remove_index()

Altering a table

The first case of table alteration is renaming:

ALTER TABLE old_name RENAME TO new_name

This is accomplished in !PyTables with:

h5f.rename_node('/', name='old_name', newname='new_name')

or through the table handle:

tbl.rename('new_name')

A handle to a table is still usable after renaming.
The second alteration, namely column addition, is currently not supported in
PyTables.

Dropping a table

In SQL you can remove a table using:

DROP TABLE table_name

In PyTables, tables are removed as other nodes, using the
tables.File.remove_node() method:

h5f.remove_node('/', 'table_name')

or through the table handle:

tbl.remove()

When you remove a table, its associated indexes are automatically removed.

Inserting data

In SQL you can insert data one row at a time (fetching from a selection will
be covered later) using a syntax like:

INSERT INTO table_name (column_name1, column_name2...)
VALUES (value1, value2...)

In PyTables, rows in a table form a sequence, so data isn’t inserted into
a set, but rather appended to the end of the sequence.
This also implies that identical rows may exist in a table (but they have a
different row number).
There are two ways of appending rows: one at a time or in a block.
The first one is conceptually similar to the SQL case:

tbl.row['column_name1'] = value1
tbl.row['column_name2'] = value2
...
tbl.row.append()

The tbl.row accessor represents a new row in the table.
You just set the values you want to set (the others take the default value
from their column declarations - see above) and the effectively append the
new row.
This code is usually enclosed in some kind of loop, like:

row = tbl.row
while some_condition:
 row['column_name1'] = value1
 ...
 row.append()

For appending a block of rows in a single shot, tables.Table.append()
is more adequate.
You just pass a NumPy [http://www.numpy.org] [5] record array or Python sequence with elements which
match the expected columns.
For example, given the tbl handle for a table with the ParticleDescription
structure described above:

rows = [
 ('foo', 0.0, 0.0, 150.0),
 ('bar', 0.5, 0.0, 100.0),
 ('foo', 1.0, 1.0, 25.0)
]
tbl.append(rows)

Using a NumPy container.
import numpy
rows = numpy.rec.array(rows)
tbl.append(rows)

A note on transactions

PyTables doesn’t support transactions nor checkpointing or rolling back (there
is undo support for operations performed on the object tree, but this is
unrelated).
Changes to the database are optimised for maximum performance and reasonable
memory requirements, which means that you can’t tell whether e.g.
tbl.append() has actually committed all, some or no data to disk when it ends.

However, you can force PyTables to commit changes to disk using the flush()
method of table and file handles:

tbl.flush() # flush data in the table
h5f.flush() # flush all pending data

Closing a table or a database actually flushes it, but it is recommended that
you explicitly flush frequently (specially with tables).

Updating data

We’re now looking for alternatives to the SQL UPDATE statement:

UPDATE table_name
SET column_name1 = expression1, column_name2 = expression2...
[WHERE condition]

There are different ways of approaching this, depending on your needs.
If you aren’t using a condition, then the SET clause updates all rows,
something you can do in PyTables by iterating over the table:

for row in tbl:
 row['column_name1'] = expression1
 row['column_name2'] = expression2
 ...
 row.update()

Don’t forget to call update() or no value will be changed!
Also, since the used iterator allows you to read values from the current row,
you can implement a simple conditional update, like this:

for row in tbl:
 if condition on row['column_name1'], row['column_name2']...:
 row['column_name1'] = expression1
 row['column_name2'] = expression2
 ...
 row.update()

There are substantially more efficient ways of locating rows fulfilling a
condition.
Given the main PyTables usage scenarios, querying and modifying data are
quite decoupled operations, so we will have a look at querying later and
assume that you already know the set of rows you want to update.

If the set happens to be a slice of the table, you may use the
:meth:`tables.Table.modify_rows method or its equivalent
tables.Table.__setitem__() notation:

rows = [
 ('foo', 0.0, 0.0, 150.0),
 ('bar', 0.5, 0.0, 100.0),
 ('foo', 1.0, 1.0, 25.0)
]
tbl.modifyRows(start=6, stop=13, step=3, rows=rows)
tbl[6:13:3] = rows # this is the same

If you just want to update some columns in the slice, use the
tables.Table.modify_columns() or tables.Table.modify_column()
methods:

cols = [
 [150.0, 100.0, 25.0]
]
These are all equivalent.
tbl.modify_columns(start=6, stop=13, step=3, columns=cols, names=['temperature'])
tbl.modify_column(start=6, stop=13, step=3, column=cols[0], colname='temperature')
tbl.cols.temperature[6:13:3] = cols[0]

The last line shows an example of using the cols accessor to get to the
desired tables.Column of the table using natural naming and apply
setitem on it.

If the set happens to be an array of sparse coordinates, you can also use
PyTables’ extended slice notation:

rows = [
 ('foo', 0.0, 0.0, 150.0),
 ('bar', 0.5, 0.0, 100.0),
 ('foo', 1.0, 1.0, 25.0)
]
rownos = [2, 735, 371913476]
tbl[rownos] = rows

instead of the traditional:

for row_id, datum in zip(rownos, rows):
 tbl[row_id] = datum

Since you are modifying table data in all cases, you should also remember to
flush() the table when you’re done.

Deleting data

Rows are deleted from a table with the following SQL syntax:

DELETE FROM table_name
[WHERE condition]

tables.Table.remove_rows() is the method used for deleting rows in
PyTables.
However, it is very simple (only contiguous blocks of rows can be deleted) and
quite inefficient, and one should consider whether dumping filtered data from
one table into another isn’t a much more convenient approach.
This is a far more optimized operation under PyTables which will be covered
later.

Anyway, using remove_row() or remove_rows() is quite straightforward:

tbl.remove_row(12) # delete one single row (12)
tbl.remove_rows(12, 20) # delete all rows from 12 to 19 (included)
tbl.remove_rows(0, tbl.nrows) # delete all rows unconditionally
tbl.remove_rows(-4, tbl.nrows) # delete the last 4 rows

Reading data

The most basic syntax in SQL for reading rows in a table without using a
condition is:

SELECT (column_name1, column_name2... | *) FROM table_name

Which reads all rows (though maybe not all columns) from a table.
In PyTables there are two ways of retrieving data: iteratively or at once.
You’ll notice some similarities with how we appended and updated data above,
since this dichotomy is widespread here.

For a clearer separation with conditional queries (covered further below),
and since the concept of row number doesn’t exist in relational databases,
we’ll be including here the cases where you want to read a known slice
or sequence of rows, besides the case of reading all rows.

Iterating over rows

This is similar to using the fetchone() method of a DB cursor in a
Python DBAPI [http://www.python.org/dev/peps/pep-0249] [6]-compliant package, i.e. you iterate over the list of wanted
rows, getting one row handle at a time.
In this case, the handle is an instance of the tables.Row class,
which allows access to individual columns as items acessed by key (so there
is no special way of selecting columns: you just use the ones you want
whenever you want).

This way of reading rows is recommended when you want to perform operations
on individual rows in a simple manner, and specially if you want to process
a lot of rows in the table (i.e. when loading them all at once would take too
much memory).
Iterators are also handy for using with the itertools Python module for
grouping, sorting and other operations.

For iterating over all rows, use plain iteration or the
tables.Table.iterrows() method:

for row in tbl: # or tbl.iterrows()
 do something with row['column_name1'], row['column_name2']...

For iterating over a slice of rows, use the
tables.Table.iterrows|Table.iterrows() method:

for row in tbl.iterrows(start=6, stop=13, step=3):
 do something with row['column_name1'], row['column_name2']...

For iterating over a sequence of rows, use the
tables.Table.itersequence() method:

for row in tbl.itersequence([6, 7, 9, 11]):
 do something with row['column_name1'], row['column_name2']...

Reading rows at once

In contrast with iteration, you can fetch all desired rows into a single
container in memory (usually an efficient NumPy [http://www.numpy.org] [5] record-array) in a single
operation, like the fetchall() or fetchmany() methods of a DBAPI cursor.
This is specially useful when you want to transfer the read data to another
component in your program, avoiding loops to construct your own containers.
However, you should be careful about the amount of data you are fetching into
memory, since it can be quite large (and even exceed its physical capacity).

You can choose between the Table.read*() methods or the
tables.Table.__getitem__() syntax for this kind of reads.
The read*() methods offer you the chance to choose a single column to read
via their field argument (which isn’t still as powerful as the SQL SELECT
column spec).

For reading all rows, use [:] or the tables.Table.read() method:

rows = tbl.read()
rows = tbl[:] # equivalent

For reading a slice of rows, use [slice] or the
tables.Table.read|Table.read() method:

rows = tbl.read(start=6, stop=13, step=3)
rows = tbl[6:13:3] # equivalent

For reading a sequence of rows, use the tables.Table.read_coordinates()
method:

rows = tbl.read_coordinates([6, 7, 9, 11])

Please note that you can add a field='column_name' argument to read*()
methods in order to get only the given column instead of them all.

Selecting data

When you want to read a subset of rows which match a given condition from a
table you use a syntax like this in SQL:

SELECT column_specification FROM table_name
WHERE condition

The condition is an expression yielding a boolean value based on a
combination of column names and constants with functions and operators.
If the condition holds true for a given row, the column_specification is
applied on it and the resulting row is added to the result.

In PyTables, you may filter rows using two approaches: the first one is
achieved through standard Python comparisons (similar to what we used for
conditional update), like this:

for row in tbl:
 if condition on row['column_name1'], row['column_name2']...:
 do something with row

This is easy for newcomers, but not very efficient. That’s why PyTables offers
another approach: in-kernel searches, which are much more efficient than
standard searches, and can take advantage of indexing (under PyTables >= 2.3).

In-kernel searches are used through the where methods in Table, which are
passed a condition string describing the condition in a Python-like syntax.
For instance, with the ParticleDescription we defined above, we may specify
a condition for selecting particles at most 1 unit apart from the origin with
a temperature under 100 with a condition string like this one:

'(sqrt(x**2 + y**2) <= 1) & (temperature < 100)'

Where x, y and temperature are the names of columns in the table.
The operators and functions you may use in a condition string are described
in the appendix on condition syntax in the
User’s Guide [http://www.pytables.org/docs/manual] [2].

Iterating over selected rows

You can iterate over the rows in a table which fulfill a condition (a la DBAPI
fetchone()) by using the tables.Table.where() method, which is very
similar to the tables.Table.iterrows() one discussed above, and which
can be used in the same circumstances (i.e. performing operations on individual
rows or having results exceeding available memory).

Here is an example of using where() with the previous example condition:

for row in tbl.where('(sqrt(x**2 + y**2) <= 1) & (temperature < 100)'):
 do something with row['name'], row['x']...

Reading selected rows at once

Like the aforementioned tables.Table.read(),
tables.Table.read_where() gets all the rows fulfilling the given
condition and packs them in a single container (a la DBAPI fetchmany()).
The same warning applies: be careful on how many rows you expect to retrieve,
or you may run out of memory!

Here is an example of using read_where() with the previous example
condition:

rows = tbl.read_where('(sqrt(x**2 + y**2) <= 1) & (temperature < 100)')

Please note that both tables.Table.where() and
tables.Table.read_where() can also take slicing arguments.

Getting the coordinates of selected rows

There is yet another method for querying tables:
tables.Table.get_where_list().
It returns just a sequence of the numbers of the rows which fulfil the given
condition.
You may pass that sequence to tables.Table.read_coordinates(), e.g. to
retrieve data from a different table where rows with the same number as the
queried one refer to the same first-class object or entity.

A note on table joins

You may have noticed that queries in PyTables only cover one table.
In fact, there is no way of directly performing a join between two tables in
PyTables (remember that it’s not a relational database).
You may however work around this limitation depending on your case:

	If one table is an extension of another (i.e. it contains additional
columns for the same entities), your best bet is to arrange rows of the
same entity so that they are placed in the same positions in both tables.
For instance, if tbl1 and tbl2 follow this rule, you may do something
like this to emulate a natural join:

 for row1 in tbl1.where('condition'):
 row2 = tbl2[row1.nrow]
 if condition on row2['column_name1'], row2['column_name2']...:
 do something with row1 and row2...

(Note that ``row1`` is a ``Row`` instance and ``row2`` is a record of the current
flavor.)

	If rows in both tables are linked by a common value (e.g. acting as an
identifier), you’ll need to split your condition in one for the first table
and one for the second table, and then nest your queries, placing the most
restrictive one first. For instance:

SELECT clients.name, bills.item_id FROM clients, bills
WHERE clients.id = bills.client_id and clients.age > 50 and bills.price > 200

could be written as:

for client in clients.where('age > 50'):
 # Note that the following query is different for each client.
 for bill in bills.where('(client_id == %r) & (price > 200)' % client['id']):
 do something with client['name'] and bill['item_id']

In this example, indexing the client_id column of bills could speed up
the inner query quite a lot.
Also, you could avoid parsing the inner condition each time by using
condition variables:

for client in clients.where('age > 50'):
 for bill in bills.where('(client_id == cid) & (price > 200)', {'cid': client['id']}):
 do something with client['name'] and bill['item_id']

Summary of row selection methods

	
	All rows
	Range of rows
	Sequence of rows
	Condition

	Iterative access
	__iter__(),
iterrows()
	iterrows(range)
	itersequence()
	where(condition)

	Block access
	[:],
read()
	[range],
read(range)
	readCoordinates()
	read_where(condition)

Sorting the results of a selection

Do you feel like writing this section? Your contribution is welcome!

Grouping the results of a selection

By making use of the itertools.groupby() utility, you can group results
by field:

group = {} # dictionary to put results grouped by 'pressure'
def pressure_selector(row):
 return row['pressure']
for pressure, rows_grouped_by_pressure in itertools.groupby(mytable, pressure_selector):
 group[pressure] = sum((r['energy'] + r['ADCcount'] for r in rows_grouped_by_pressure))

However, itertools.groupby() assumes the incoming array is sorted by the
grouping field.
If not, there are multiple groups with the same grouper returned.
In the example, mytable thus has to be sorted on pressure, or the last line
should be changed to:

group[pressure] += sum((r['energy'] + r['ADCcount'] for r in rows_grouped_by_pressure))

	[1]	https://lists.sourceforge.net/lists/listinfo/pytables-users

	[2]	(1, 2) http://www.pytables.org/docs/manual

	[3]	(1, 2) http://www.hdfgroup.org/HDF5

	[4]	http://www.sqlite.org

	[5]	(1, 2) http://www.numpy.org

	[6]	http://www.python.org/dev/peps/pep-0249

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 How to integrate PyTables in your application by using py2exe

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Cookbook

How to integrate PyTables in your application by using py2exe

This document shortly describes how to build an executable when using PyTables.
Py2exe [http://www.py2exe.org] [1] is a third party product that converts python scripts into standalone
windows application/programs.
For more information about py2exe please visit http://www.py2exe.org.

To be able to use py2exe you have to download and install it.
Please follow the instructions at http://www.py2exe.org.

Let’s assume that you have written a python script as in the attachment
py2exe_howto/pytables_test.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

	from tables import *
import numarray

class Particle(IsDescription):
 name = StringCol(16) # 16-character String
 idnumber = Int64Col() # Signed 64-bit integer
 ADCcount = UInt16Col() # Unsigned short integer
 TDCcount = UInt8Col() # Unsigned byte
 grid_i = Int32Col() # Integer
 grid_j = IntCol() # Integer (equivalent to Int32Col)
 pressure = Float32Col() # Float (single-precision)
 energy = FloatCol() # Double (double-precision)

h5file = openFile("tutorial.h5", mode="w", title="Test file")
group = h5file.createGroup("/", "detector", "Detector information")
table = h5file.createTable(group, "readout", Particle, "Readout example")

print h5file

particle = table.row

for i in xrange(10):
 particle['name'] = 'Particle: %6d' % i
 particle['TDCcount'] = i % 256
 particle['ADCcount'] = (i*256) % (1<<16)
 particle['grid_i'] = i
 particle['grid_j'] = 10 - i
 particle['pressure'] = float(i*i)
 particle['energy'] = float(particle['pressure']**4)
 particle['idnumber'] = i * (2**34)
 particle.append()

table.flush()

table = h5file.root.detector.readout
pressure = [x['pressure'] for x in table.iterrows() if x['TDCcount']>3 and
 20<=x['pressure']<50]

print pressure

h5file.close()

To wrap this script into an executable you have to create a setup script and a
configuration script in your program directory.

The setup script will look like this:

from distutils.core import setup
import py2exe
setup(console=['pytables_test.py'])

The configuration script (setup.cfg) specifies which modules to be
included and excluded:

[py2exe]
excludes= Tkconstants,Tkinter,tcl
includes= encodings.*, tables.*, numarray.*

As you can see I have included everything from tables (tables.*) and numarray
(numarray.*).

Now you are ready to build the executable file (pytable_test.exe).
During the build process a subfolder called dist will be created.
This folder contains everything needed for your program.
All dependencies (dll’s and such stuff) will be copied into this folder.
When you distribute your application you have to distribute all files and
folders inside the dist folder.

Below you can see how to start the build process (python setup.py py2exe):

c:pytables_test> python setup.py py2exe
...
BUILDING EXECUTABLE
...

After the build process I enter the dist folder and start
pytables_test.exe.

c:pytables_test> cd dist

c:pytables_testdist> pytables_test.exe
tutorial.h5 (File) 'Test file'
Last modif.: 'Tue Apr 04 23:09:17 2006'
Object Tree:
/ (RootGroup) 'Test file'
/detector (Group) 'Detector information'
/detector/readout (Table(0,)) 'Readout example'

[25.0, 36.0, 49.0]

DONE!

	[1]	http://www.py2exe.org

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Installing PyTables when you’re not root

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Cookbook

Installing PyTables when you’re not root

By Koen van de Sande [http://www.tibed.net].

Warning

contents of this recipe recipe may be outdated.

This guide describes how to install PyTables and its dependencies on Linux or
other *nix systems when your user account is not root.
Installing the HDF5 [http://www.hdfgroup.org/HDF5] [1] shared libraries and Python extensions NumArray and
NumPy requires some non-trivial steps to work.
We describe all steps needed.
They only assumption is that you have Python 2.3 or higher and a C/C++ compiler
(gcc) installed.

Installing HDF5

	First go to or make a temporary folder where we can download and compile
software.
We’ll assume you’re in this temporary folder in the rest of this section.

	Download hdf5-1.6.5.tar.gz from ftp://ftp.hdfgroup.org/HDF5/current16/src/:

wget ftp://ftp.hdfgroup.org/HDF5/current16/src/hdf5-1.6.5.tar.gz

	Extract the archive to the current folder:

tar xzvf hdf5-1.6.5.tar.gz

	Go to the extracted HDF5 folder:

cd hdf5-1.6.5

	Run the configure script:

./configure

	Run make:

make install

	We’ve now compiled HDF5 [http://www.hdfgroup.org/HDF5] [1] into the hdf5 folder inside the source tree.
We’ll need to move this to its final location.
For this guide, we’ll make a software folder inside your home directory
to store installed libraries:

mkdir ~/software

	Move the files to the right location:

mv hdf5 ~/software/

Installing NumArray

	From the NumArray SourceForge page [http://sourceforge.net/projects/numpy/files] download
NumArray 1.5.2 to our temporary folder.

	Extract the archive:

tar xzvf numarray-1.5.2.tar.gz

	Go to the NumArray folder:

cd numarray-1.5.2

	Build and install the Python module into our software folder (it will
actually end up in ~/software/lib/python:

python setup.py install --home=~/software

We will also need to copy the header files of NumArray so PyTables can use
them later on for compilation.
Skipping this step will lead to compilation errors for PyTables.

	Go into the header file folder:

cd include

	Copy the header files. We’ll put them together with the HDF5 [http://www.hdfgroup.org/HDF5] [1] header files:

cp -r numarray ~/software/hdf5/include/

Installing NumPy (optional)

It is not required to install NumPy; PyTables will work with just NumArray
installed.
However, I do recommend that you install NumPy as well, because PyTables
can optionally use it.

	From the NumPy SourceForge page [http://sourceforge.net/projects/numpy/files] download
NumPy 1.0 (at time of writing) to our temporary folder.

	Extract the archive:

tar xzvf numpy-1.0.tar.gz

	Go to the NumPy folder:

cd numpy-1.0

	Build and install the Python module into our software folder:

python setup.py install --home=~/software

Python wrapper script

We’ve installed all dependencies of PyTables.
We need to create a wrapper script for Python to let PyTables actually find
all these dependencies.
Had we installed them as root, they’d be trivial to find, but now we need to
help a bit.

	Create a script with the following contents (I’ve called this script p on
my machine):

#!/bin/bash
export PYTHONPATH=~/software/lib/python
export HDF5_DIR=~/software/hdf5
export LD_LIBRARY_PATH=~/software/lib/python/tables:~/software/hdf5/lib
python $*

	Make the script executable:

chmod 755 p

	Place the script somewhere on your path (for example, inside a folder
called bin inside your home dir, which is normally added to the path
automatically).
If you do not add this script to your path, you’ll have to replace p in
scripts below by the full path (and name of) your script, e.g.
~/pytablespython.sh if you called it pytablespython.sh and put it in
your home dir.

	Test your Python wrapper script:

p

	It should now start Python. And you should be able to import numarray
(and optionally numpy) without errors:

Python 2.3.4 (#1, Feb 2 2005, 12:11:53)
[GCC 3.4.2 20041017 (Red Hat 3.4.2-6.fc3)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import numarray
>>> import numpy
>>>

Note

you could do this differently by defining these environment settings
somewhere in your startup scripts, but this wrapper script approach is
cleaner.

Installing PyTables

	From the SourceForge page [http://sourceforge.net/projects/pytables/files]
download PyTables 1.3.3 (at time of writing) to our temporary folder.

	Extract the archive:

tar xzvf pytables-1.3.3.tar.gz

	Go to the PyTables folder:

cd pytables-1.3.3

	Install PyTables using our wrapper script:

p setup.py install --home=~/software

	If you get the following error then you are not using the wrapper script
properly!

.. ERROR:: Can't find a local numarray Python installation.
 Please, read carefully the ``README`` file and remember that
 PyTables needs the numarray package to compile and run.}}}

Running Python with PyTables support

	Use your Python wrapper script to start Python:

p

	You can now import tables without errors:

Python 2.3.4 (#1, Feb 2 2005, 12:11:53)
[GCC 3.4.2 20041017 (Red Hat 3.4.2-6.fc3)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import tables
>>> tables.__version__
'1.3.3'
>>>

Concluding remarks

	It is safe to remove the temporary folder we have used in this guide,
there are no dependencies on it.

	This guide was written for and tested with HDF5 1.6.5, PyTables 1.3.3 and
NumArray 1.5.2.

Enjoy working with PyTables!

Koen

	[1]	(1, 2, 3) http://www.hdfgroup.org/HDF5

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Tailoring atexit hooks

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Cookbook

Tailoring atexit hooks

In some situations you may want to tailor the typical messages that PyTables
outputs:

Closing remaining open files: /tmp/prova.h5... done

The responsible of this behaviour is the tables.file.close_open_files()
function that is being registered via atexit.register() Python function.
Although you can’t de-register already registered cleanup functions, you can
register new ones to tailor the existing behaviour.
For example, if you register this function:

def my_close_open_files(verbose):
 open_files = tables.file._open_files

 are_open_files = len(open_files) > 0

 if verbose and are_open_files:
 sys.stderr.write("Closing remaining open files:")

 if StrictVersion(tables.__version__) >= StrictVersion("3.1.0"):
 # make a copy of the open_files.handlers container for the iteration
 handlers = list(open_files.handlers)
 else:
 # for older versions of pytables, setup the handlers list from the
 # keys
 keys = open_files.keys()
 handlers = []
 for key in keys:
 handlers.append(open_files[key])

 for fileh in handlers:
 if verbose:
 sys.stderr.write("%s..." % fileh.filename)

 fileh.close()

 if verbose:
 sys.stderr.write("done")

 if verbose and are_open_files:
 sys.stderr.write("\n")

import sys, atexit
from distutils.version import StrictVersion
atexit.register(my_close_open_files, False)

then, you won’t get the closing messages anymore because the new registered
function is executed before the existing one.
If you want the messages back again, just set the verbose parameter to true.

You can also use the atexit hooks to perform other cleanup functions as well.

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Using your own custom data types

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Cookbook

Using your own custom data types

You can make your own data types by subclassing Table (or other PyTables types,
such as tables.Leaf).
This can be useful for storing a specialized type of data or presenting a
customized API.

Here’s one way to do it, taken from
http://sourceforge.net/mailarchive/message.php?msg_id=200805250042.50653.pgmdevlist%40gmail.com

from __future__ import print_function
import numpy as np
import numpy.ma as ma

import tables
from tables import File, Table
from tables.file import _checkfilters

from tables.parameters import EXPECTED_ROWS_TABLE

class MaskedTable(Table):
 _c_classId = 'MaskedTable'
 def __init__(self, parentNode, name, description=None,
 title="", filters=None,

 expectedrows=EXPECTED_ROWS_TABLE,
 chunkshape=None, byteorder=None, _log=True):
 new = description is None
 if not new:
 maskedarray = description
 description = np.array(zip(maskedarray.filled().flat,

 ma.getmaskarray(maskedarray).flat),
 dtype=[('_data',maskedarray.dtype),
 ('_mask',bool)])
 Table.__init__(self, parentNode, name,
 description=description, title=title,
 filters=filters,

 expectedrows=expectedrows,
 chunkshape=chunkshape, byteorder=byteorder,
 _log=_log)
 if not new:
 self.attrs.shape = maskedarray.shape

 def read(self, start=None, stop=None, step=None, field=None):
 data = Table.read(self, start=start, stop=stop, step=step,
 field=field)
 newshape = self.attrs.shape
 return ma.array(data['_data'],
 mask=data['_mask']).reshape(newshape)

def createMaskedTable(self, where, name, maskedarray, title="",
 filters=None, expectedrows=10000,
 chunkshape=None, byteorder=None,
 createparents=False):
 parentNode = self._getOrCreatePath(where, createparents)

 _checkfilters(filters)
 return MaskedTable(parentNode, name, maskedarray,
 title=title, filters=filters,
 expectedrows=expectedrows,
 chunkshape=chunkshape, byteorder=byteorder)

File.createMaskedTable = createMaskedTable

if __name__ == '__main__':
 x = ma.array(np.random.rand(100),mask=(np.random.rand(100) > 0.7))
 h5file = tables.openFile('tester.hdf5','w')
 mtab = h5file.createMaskedTable('/','random',x)

 h5file.flush()
 print(type(mtab))
 print(mtab.read())
 h5file.close()
 h5file = tables.openFile('tester.hdf5','r')
 mtab = h5file.root.random

 print(type(mtab))
 print(mtab.read())

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 SimpleTable: simple wrapper around the Table object

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Cookbook

SimpleTable: simple wrapper around the Table object

Here it is yet another example on how to inherit from the tables.Table
object so as to build an easy-to-use Table object.
Thanks to Brent Pedersen for this one (taken from
https://pypi.python.org/pypi/simpletable).

"""

SimpleTable: simple wrapper around pytables hdf5
--

Example Usage::

 >>> from simpletable import SimpleTable
 >>> import tables

 # define the table as a subclass of simple table.
 >>> class ATable(SimpleTable):
 ... x = tables.Float32Col()
 ... y = tables.Float32Col()
 ... name = tables.StringCol(16)

 # instantiate with: args: filename, tablename
 >>> tbl = ATable('test_docs.h5', 'atable1')

 # insert as with pytables:
 >>> row = tbl.row
 >>> for i in range(50):
 ... row['x'], row['y'] = i, i * 10
 ... row['name'] = "name_%i" % i
 ... row.append()
 >>> tbl.flush()

 # there is also insert_many() method() with takes an iterable
 # of dicts with keys matching the colunns (x, y, name) in this
 # case.

 # query the data (query() alias of tables' readWhere()
 >>> tbl.query('(x > 4) & (y < 70)') #doctest: +NORMALIZE_WHITESPACE
 array([('name_5', 5.0, 50.0), ('name_6', 6.0, 60.0)],
 dtype=[('name', '|S16'), ('x', '<f4'), ('y', '<f4')])

"""

import tables
_filter = tables.Filters(complib="lzo", complevel=1, shuffle=True)

class SimpleTable(tables.Table):
 def __init__(self, file_name, table_name, description=None,
 group_name='default', mode='a', title="", filters=_filter,
 expectedrows=512000):

 f = tables.openFile(file_name, mode)
 self.uservars = None

 if group_name is None: group_name = 'default'
 parentNode = f._getOrCreatePath('/' + group_name, True)

 if table_name in parentNode: # existing table
 description = None
 elif description is None: # pull the description from the attrs
 description = dict(self._get_description())

 tables.Table.__init__(self, parentNode, table_name,
 description=description, title=title,
 filters=filters,
 expectedrows=expectedrows,
 _log=False)
 self._c_classId = self.__class__.__name__

 def _get_description(self):
 # pull the description from the attrs
 for attr_name in dir(self):
 if attr_name[0] == '_': continue
 try:
 attr = getattr(self, attr_name)
 except:
 continue
 if isinstance(attr, tables.Atom):
 yield attr_name, attr

 def insert_many(self, data_generator, attr=False):
 row = self.row
 cols = self.colnames
 if not attr:
 for d in data_generator:
 for c in cols:
 row[c] = d[c]
 row.append()
 else:
 for d in data_generator:
 for c in cols:
 row[c] = getattr(d, c)
 row.append()
 self.flush()

 query = tables.Table.readWhere

convience sublcass that i use a lot.
class BlastTable(SimpleTable):
 query = tables.StringCol(5)
 subject = tables.StringCol(5)

 pctid = tables.Float32Col()
 hitlen = tables.UInt16Col()
 nmismatch = tables.UInt16Col()
 ngaps = tables.UInt16Col()

 qstart = tables.UInt32Col()
 qstop = tables.UInt32Col()
 sstart = tables.UInt32Col()
 sstop = tables.UInt32Col()

 evalue = tables.Float64Col()
 score = tables.Float32Col()

if __name__ == '__main__':
 import doctest
 doctest.testmod()
 import os
 os.unlink('test_docs.h5')

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 In-memory HDF5 files

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Cookbook

In-memory HDF5 files

The HDF5 library provides functions to allow an application to work with a
file in memory for faster reads and writes. File contents are kept in memory
until the file is closed. At closing, the memory version of the file can be
written back to disk or abandoned.

Open an existing file in memory

Assuming the sample.h5 exists in the current folder, it is possible to
open it in memory simply using the CORE driver at opening time.

The HDF5 driver that one intend to use to open/create a file can be specified
using the driver keyword argument of the tables.open_file() function:

>>> import tables
>>> h5file = tables.open_file("sample.h", driver="H5FD_CORE")

The content of the :file`sample.h5` is opened for reading. It is loaded into
memory and all reading operations are performed without disk I/O overhead.

Note

the initial loading of the entire file into memory can be time expensive
depending on the size of the opened file and on the performances of the
disk subsystem.

See also

general information about HDF5 drivers can be found in the Alternate
File Storage Layouts and Low-level File Drivers [http://www.hdfgroup.org/HDF5/doc/UG/08_TheFile.html#Drivers] [3] section of the HDF5
User’s Guide [http://www.hdfgroup.org/HDF5/doc/UG/index.html] [1].

Creating a new file in memory

Creating a new file in memory is as simple as creating a regular file, just
one needs to specify to use the CORE driver:

>>> import tables
>>> h5file = tables.open_file("new_sample.h5", "w", driver="H5FD_CORE")
>>> import numpy
>>> a = h5file.create_array(h5file.root, "array", numpy.zeros((300, 300)))
>>> h5file.close()

Backing store

In the previous example contents of the in-memory h5file are automatically
saved to disk when the file descriptor is closed, so a new
new_sample.h5 file is created and all data are transferred to disk.

Again this can be time a time expensive action depending on the amount of
data in the HDF5 file and depending on how fast is the disk I/O.

Saving data to disk is the default behavior for the CORE driver in PyTables.

This feature can be controlled using the driver_core_backing_store
parameter of the tables.open_file() function. Setting it to False
disables the backing store feature and all changes in the working h5file
are lost after closing:

>>> h5file = tables.open_file("new_sample.h5", "w", driver="H5FD_CORE",
... driver_core_backing_store=0)

Please note that the driver_core_backing_store disables saving of data, not
loading.
In the following example the sample.h5 file is opened in-memory in
append mode. All data in the existing sample.h5 file are loaded into
memory and contents can be actually modified by the user:

>>> import tables
>>> h5file = tables.open_file("sample.h5", "a", driver="H5FD_CORE",
 driver_core_backing_store=0)
>>> import numpy
>>> h5file.create_array(h5file.root, "new_array", numpy.arange(20),
 title="New array")
>>> array2 = h5file.root.array2
>>> print(array2)
/array2 (Array(20,)) 'New array'
>>> h5file.close()

Modifications are lost when the h5file descriptor is closed.

Memory images of HDF5 files

It is possible to get a memory image of an HDF5 file (see
HDF5 File Image Operations [http://www.hdfgroup.org/HDF5/doc/Advanced/FileImageOperations/HDF5FileImageOperations.pdf] [2]). This feature is only available if PyTables
is build against version 1.8.9 or newer of the HDF5 library.

In particular getting a memory image of an HDF5 file is possible only if the
file has been opened with one of the following drivers: SEC2 (the default
one), STDIO or CORE.

An example of how to get an image:

>>> import tables
>>> h5file = tables.open_file("sample.h5")
>>> image = h5file.get_file_image()
>>> h5file.close()

The memory ìmage of the sample.h5 file is copied into the ìmage
string (of bytes).

Note

the ìmage string contains all data stored in the HDF5 file so, of
course, it can be quite large.

The ìmage string can be passed around and can also be used to initialize a
new HDF5 file descriptor:

>>> import tables
>>> h5file = tables.open_file("in-memory-sample.h5", driver="H5FD_CORE",
 driver_core_image=image,
 driver_core_backing_store=0)
>>> print(h5file.root.array)
/array (Array(300, 300)) 'Array'
>>> h5file.setNodeAttr(h5file.root, "description", "In memory file example")

	[1]	http://www.hdfgroup.org/HDF5/doc/UG/index.html

	[2]	http://www.hdfgroup.org/HDF5/doc/Advanced/FileImageOperations/HDF5FileImageOperations.pdf

	[3]	http://www.hdfgroup.org/HDF5/doc/UG/08_TheFile.html#Drivers

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Threading

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Cookbook

Threading

Background

Several bug reports have been filed in the past by the users regarding
problems related to the impossibility to use PyTables in multi-thread
programs.

The problem was mainly related to an internal registry that forced the
sharing of HDF5 file handles across multiple threads.

In PyTables 3.1.0 the code for file handles management has been completely
redesigned (see the Backward incompatible changes section in
Changes from 3.1.0 to 3.1.1) to be more simple and
transparent and to allow the use of PyTables in multi-thread programs.

Citing the Changes from 3.1.0 to 3.1.1:

It is important to stress that the new implementation still has an
internal registry (implementation detail) and it is still
not thread safe.
Just now a smart enough developer should be able to use PyTables in a
muti-thread program without too much headaches.

A common schema for concurrency

Although it is probably not the most efficient or elegant solution to solve
a certain class of problems, many users seems to like the possibility to
load a portion of data and process it inside a thread function using
multiple threads to process the entire dataset.

Each thread is responsible of:

	opening the (same) HDF5 file for reading,

	load data from it and

	close the HDF5 file itself

Each file handle is of exclusive use of the thread that opened it and
file handles are never shared across threads.

In order to do it in a safe way with PyTables some care should be used
during the phase of opening and closing HDF5 files in order ensure the
correct behaviour of the internal machinery used to manage HDF5 file handles.

Very simple solution

A very simple solution for this kind of scenario is to use a
threading.Lock around part of the code that are considered critical
e.g. the open_file() function and the File.close() method:

import threading

lock = threading.Lock()

def synchronized_open_file(*args, **kwargs):
 with lock:
 return tb.open_file(*args, **kwargs)

def synchronized_close_file(self, *args, **kwargs):
 with lock:
 return self.close(*args, **kwargs)

The synchronized_open_file() and synchronized_close_file() can
be used in the thread function to open and close the HDF5 file:

import numpy as np
import tables as tb

def run(filename, path, inqueue, outqueue):
 try:
 yslice = inqueue.get()
 h5file = synchronized_open_file(filename, mode='r')
 h5array = h5file.get_node(path)
 data = h5array[yslice, ...]
 psum = np.sum(data)
 except Exception as e:
 outqueue.put(e)
 else:
 outqueue.put(psum)
 finally:
 synchronized_close_file(h5file)

Finally the main function of the program:

	instantiates the input and output queue.Queue,

	starts all threads,

	sends the processing requests on the input queue.Queue

	collects results reading from the output queue.Queue

	performs finalization actions (threading.Thread.join())

import os
import queue
import threading

import numpy as np
import tables as tb

SIZE = 100
NTHREADS = 5
FILENAME = 'simple_threading.h5'
H5PATH = '/array'

def create_test_file(filename):
 data = np.random.rand(SIZE, SIZE)

 with tb.open_file(filename, 'w') as h5file:
 h5file.create_array('/', 'array', title="Test Array", obj=data)

def chunk_generator(data_size, nchunks):
 chunk_size = int(np.ceil(data_size / nchunks))
 for start in range(0, data_size, chunk_size):
 yield slice(start, start + chunk_size)

def main():
 # generate the test data
 if not os.path.exists(FILENAME):
 create_test_file(FILENAME)

 threads = []
 inqueue = queue.Queue()
 outqueue = queue.Queue()

 # start all threads
 for i in range(NTHREADS):
 thread = threading.Thread(
 target=run, args=(FILENAME, H5PATH, inqueue, outqueue))
 thread.start()
 threads.append(thread)

 # push requests in the input queue
 for yslice in chunk_generator(SIZE, len(threads)):
 inqueue.put(yslice)

 # collect results
 try:
 mean_ = 0.

 for i in range(len(threads)):
 out = outqueue.get()
 if isinstance(out, Exception):
 raise out
 else:
 mean_ += out

 mean_ /= SIZE * SIZE

 finally:
 for thread in threads:
 thread.join()

 # print results
 print('Mean: {}'.format(mean_))

if __name__ == '__main__':
 main()

The program in the example computes the mean value of a potentially huge
dataset splinting the computation across NTHREADS (5 in this case)
threads.

The complete and working code of this example (Python 3 is required) can be
found in the examples directory:
simple_threading.py.

The approach presented in this section is very simple and readable but has
the drawback that the user code have to be modified to replace
open_file() and File.close() calls with their safe version
(synchronized_open_file() and synchronized_close_file()).

Also, the solution showed in the example does not cover the entire PyTables
API (e.g. although not recommended HDF5 files can be opened using the
File constructor) and makes it impossible to use pythonic
constructs like the with statement:

with tb.open_file(filename) as h5file:
 do_something(h5file)

Monkey-patching PyTables

An alternative implementation with respect to the Very simple solution
presented in the previous section consists in monkey-patching the PyTables
package to replace some of its components with a more thread-safe version of
themselves:

import threading

import tables as tb
import tables.file as _tables_file

class ThreadsafeFileRegistry(_tables_file._FileRegistry):
 lock = threading.RLock()

 @property
 def handlers(self):
 return self._handlers.copy()

 def add(self, handler):
 with self.lock:
 return super().add(handler)

 def remove(self, handler):
 with self.lock:
 return super().remove(handler)

 def close_all(self):
 with self.lock:
 return super().close_all(handler)

class ThreadsafeFile(_tables_file.File):
 def __init__(self, *args, **kargs):
 with ThreadsafeFileRegistry.lock:
 super().__init__(*args, **kargs)

 def close(self):
 with ThreadsafeFileRegistry.lock:
 super().close()

@functools.wraps(tb.open_file)
def synchronized_open_file(*args, **kwargs):
 with ThreadsafeFileRegistry.lock:
 return _tables_file._original_open_file(*args, **kwargs)

monkey patch the tables package
_tables_file._original_open_file = _tables_file.open_file
_tables_file.open_file = synchronized_open_file
tb.open_file = synchronized_open_file

_tables_file._original_File = _tables_file.File
_tables_file.File = ThreadsafeFile
tb.File = ThreadsafeFile

_tables_file._open_files = ThreadsafeFileRegistry()

At this point PyTables can be used transparently in example program presented
in the previous section.
In particular the standard PyTables API (including with statements) can be
used in the thread function:

def run(filename, path, inqueue, outqueue):
 try:
 yslice = inqueue.get()
 with tb.open_file(filename, mode='r') as h5file:
 h5array = h5file.get_node(path)
 data = h5array[yslice, ...]
 psum = np.sum(data)
 except Exception as e:
 outqueue.put(e)
 else:
 outqueue.put(psum)

The complete code of this version of the example can be found in the
examples folder:
simple_threading.py.
Python 3 is required.

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 FAQ

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

FAQ

General questions

What is PyTables?

PyTables is a package for managing hierarchical datasets designed to
efficiently cope with extremely large amounts of data.

It is built on top of the HDF5 [http://www.hdfgroup.org/HDF5] [1] library, the Python language [http://www.python.org] [2] and the
NumPy [http://www.numpy.org] [3] package.
It features an object-oriented interface that, combined with C extensions
for the performance-critical parts of the code, makes it a fast yet
extremely easy-to-use tool for interactively storing and retrieving very
large amounts of data.

What are PyTables’ licensing terms?

PyTables is free for both commercial and non-commercial use, under the terms
of the BSD license.

I’m having problems. How can I get support?

The most common and efficient way is to subscribe (remember you need to
subscribe prior to send messages) to the PyTables users mailing list [https://groups.google.com/group/pytables-users] [4], and
send there a brief description of your issue and, if possible, a short script
that can reproduce it.
Hopefully, someone on the list will be able to help you.
It is also a good idea to check out the archives of the user’s list [http://sourceforge.net/mailarchive/forum.php?forum_id=13760] [5] (you may
want to check the Gmane archives [http://www.mail-archive.com/pytables-users@lists.sourceforge.net/] [6] instead) so as to see if the answer to your
question has already been dealed with.

Why HDF5?

HDF5 [http://www.hdfgroup.org/HDF5] [1] is the underlying C library and file format that enables PyTables to
efficiently deal with the data. It has been chosen for the following reasons:

	Designed to efficiently manage very large datasets.

	Lets you organize datasets hierarchically.

	Very flexible and well tested in scientific environments.

	Good maintenance and improvement rate.

	Technical excellence (R&D 100 Award [http://www.hdfgroup.org/HDF5/RD100-2002/] [7]).

	It’s Open Source software

Why Python?

	Python is interactive.

People familiar with data processing understand how powerful command line
interfaces are for exploring mathematical relationships and scientific data
sets. Python provides an interactive environment with the added benefit of
a full featured programming language behind it.

	Python is productive for beginners and experts alike.

PyTables is targeted at engineers, scientists, system analysts, financial
analysts, and others who consider programming a necessary evil. Any time
spent learning a language or tracking down bugs is time spent not solving
their real problem. Python has a short learning curve and most people can
do real and useful work with it in a day of learning. Its clean syntax and
interactive nature facilitate this.

	Python is data-handling friendly.

Python comes with nice idioms that make the access to data much easier:
general slicing (i.e. data[start:stop:step]), list comprehensions,
iterators, generators ... are constructs that make the interaction with your
data very easy.

Why NumPy?

NumPy [http://www.numpy.org] [3] is a Python package to efficiently deal with large datasets
in-memory, providing containers for homogeneous data, heterogeneous data,
and string arrays.
PyTables uses these NumPy containers as in-memory buffers to push the I/O
bandwith towards the platform limits.

Where can PyTables be applied?

In all the scenarios where one needs to deal with large datasets:

	Industrial applications
	Data acquisition in real time

	Quality control

	Fast data processing

	Scientific applications
	Meteorology, oceanography

	Numerical simulations

	Medicine (biological sensors, general data gathering & processing)

	Information systems
	System log monitoring & consolidation

	Tracing of routing data

	Alert systems in security

Is PyTables safe?

Well, first of all, let me state that PyTables does not support transactional
features yet (we don’t even know if we will ever be motivated to implement
this!), so there is always the risk that you can lose your data in case of an
unexpected event while writing (like a power outage, system shutdowns ...).
Having said that, if your typical scenarios are write once, read many, then
the use of PyTables is perfectly safe, even for dealing extremely large amounts
of data.

Can PyTables be used in concurrent access scenarios?

It depends. Concurrent reads are no problem at all. However, whenever a process
(or thread) is trying to write, then problems will start to appear. First,
PyTables doesn’t support locking at any level, so several process writing
concurrently to the same PyTables file will probably end up corrupting it, so
don’t do this! Even having only one process writing and the others reading is
a hairy thing, because the reading processes might be reading incomplete data
from a concurrent data writing operation.

The solution would be to lock the file while writing and unlock it after a
flush over the file has been performed. Also, in order to avoid cache (HDF5 [http://www.hdfgroup.org/HDF5] [1],
PyTables) problems with read apps, you would need to re-open your files
whenever you are going to issue a read operation. If a re-opening operation is
unacceptable in terms of speed, you may want to do all your I/O operations in
one single process (or thread) and communicate the results via sockets,
Queue.Queue objects (in case of using threads), or whatever, with the
client process/thread.

The examples directory contains two scripts demonstrating methods of accessing a
PyTables file from multiple processes.

The first, multiprocess_access_queues.py, uses a
multiprocessing.Queue object to transfer read and write requests from
multiple DataProcessor processes to a single process responsible for all
access to the PyTables file. The results of read requests are then transferred
back to the originating processes using other Queue objects.

The second example script, multiprocess_access_benchmarks.py, demonstrates
and benchmarks four methods of transferring PyTables array data between
processes. The four methods are:

	Using multiprocessing.Pipe from the Python standard library.

	Using a memory mapped file that is shared between two processes. The NumPy
array associated with the file is passed as the out argument to the
tables.Array.read() method.

	Using a Unix domain socket. Note that this example uses the ‘abstract
namespace’ and will only work under Linux.

	Using an IPv4 socket.

What kind of containers does PyTables implement?

PyTables does support a series of data containers that address specific needs
of the user. Below is a brief description of them:

	:Table:

	Lets you deal with heterogeneous datasets. Allows compression. Enlargeable.
Supports nested types. Good performance for read/writing data.

	:Array:

	Provides quick and dirty array handling. Not compression allowed.
Not enlargeable. Can be used only with relatively small datasets (i.e.
those that fit in memory). It provides the fastest I/O speed.

	:CArray:

	Provides compressed array support. Not enlargeable. Good speed when
reading/writing.

	:EArray:

	Most general array support. Compressible and enlargeable. It is pretty
fast at extending, and very good at reading.

	:VLArray:

	Supports collections of homogeneous data with a variable number of entries.
Compressible and enlargeable. I/O is not very fast.

	:Group:

	The structural component.
A hierarchically-addressable container for HDF5 nodes (each of these
containers, including Group, are nodes), similar to a directory in a
UNIX filesystem.

Please refer to the Library Reference for more specific information.

Cool! I’d like to see some examples of use.

Sure. Go to the HowToUse section to find simple examples that will help you
getting started.

Can you show me some screenshots?

Well, PyTables is not a graphical library by itself. However, you may want to
check out ViTables [http://vitables.org] [8], a GUI tool to browse and edit PyTables & HDF5 [http://www.hdfgroup.org/HDF5] [1] files.

Is PyTables a replacement for a relational database?

No, by no means. PyTables lacks many features that are standard in most
relational databases. In particular, it does not have support for
relationships (beyond the hierarchical one, of course) between datasets and it
does not have transactional features. PyTables is more focused on speed and
dealing with really large datasets, than implementing the above features. In
that sense, PyTables can be best viewed as a teammate of a relational
database.

For example, if you have very large tables in your existing relational
database, they will take lots of space on disk, potentially reducing the
performance of the relational engine. In such a case, you can move those huge
tables out of your existing relational database to PyTables, and let your
relational engine do what it does best (i.e. manage relatively small or medium
datasets with potentially complex relationships), and use PyTables for what it
has been designed for (i.e. manage large amounts of data which are loosely
related).

How can PyTables be fast if it is written in an interpreted language like Python?

Actually, all of the critical I/O code in PyTables is a thin layer of code on
top of HDF5 [http://www.hdfgroup.org/HDF5] [1], which is a very efficient C library. Cython [http://www.cython.org] [9] is used as the
glue language to generate “wrappers” around HDF5 calls so that they can be
used in Python. Also, the use of an efficient numerical package such as NumPy [http://www.numpy.org] [3]
makes the most costly operations effectively run at C speed. Finally,
time-critical loops are usually implemented in Cython [http://www.cython.org] [9] (which, if used
properly, allows to generate code that runs at almost pure C speeds).

If it is designed to deal with very large datasets, then PyTables should consume a lot of memory, shouldn’t it?

Well, you already know that PyTables sits on top of HDF5, Python and NumPy [http://www.numpy.org] [3],
and if we add its own logic (~7500 lines of code in Python, ~3000 in Cython and
~4000 in C), then we should conclude that PyTables isn’t effectively a paradigm
of lightness.

Having said that, PyTables (as HDF5 [http://www.hdfgroup.org/HDF5] [1] itself) tries very hard to optimize the
memory consumption by implementing a series of features like dynamic
determination of buffer sizes, Least Recently Used cache for keeping unused
nodes out of memory, and extensive use of compact NumPy [http://www.numpy.org] [3] data containers.
Moreover, PyTables is in a relatively mature state and most memory leaks have
been already addressed and fixed.

Just to give you an idea of what you can expect, a PyTables program can deal
with a table with around 30 columns and 1 million entries using as low as 13 MB
of memory (on a 32-bit platform). All in all, it is not that much, is it?.

Why was PyTables born?

Because, back in August 2002, one of its authors (Francesc Alted [http://www.pytables.org/moin/FrancescAlted] [10]) had a need
to save lots of hierarchical data in an efficient way for later post-processing
it. After trying out several approaches, he found that they presented distinct
inconveniences. For example, working with file sizes larger than, say, 100 MB,
was rather painful with ZODB (it took lots of memory with the version available
by that time).

The netCDF3 [http://www.unidata.ucar.edu/software/netcdf] [11] interface provided by Scientific Python [http://dirac.cnrs-orleans.fr/plone/software/scientificpython] [12] was great, but it did
not allow to structure the hierarchically; besides, netCDF3 [http://www.unidata.ucar.edu/software/netcdf] [11] only supports
homogeneous datasets, not heterogeneous ones (i.e. tables). (As an aside,
netCDF4 [http://www.unidata.ucar.edu/software/netcdf] [11] overcomes many of the limitations of netCDF3 [http://www.unidata.ucar.edu/software/netcdf] [11], although curiously
enough, it is based on top of HDF5 [http://www.hdfgroup.org/HDF5] [1], the library chosen as the base for
PyTables from the very beginning.)

So, he decided to give HDF5 [http://www.hdfgroup.org/HDF5] [1] a try, start doing his own wrappings to it and
voilà, this is how the first public release of PyTables (0.1) saw the light in
October 2002, three months after his itch started to eat him ;-).

Does PyTables have a client-server interface?

Not by itself, but you may be interested in using PyTables through pydap [http://www.pydap.org] [13], a
Python implementation of the OPeNDAP [http://opendap.org] [14] protocol. Have a look at the PyTables
plugin of pydap [http://www.pydap.org] [13].

How does PyTables compare with the h5py project?

Well, they are similar in that both packages are Python interfaces to the HDF5 [http://www.hdfgroup.org/HDF5] [1]
library, but there are some important differences to be noted. h5py [http://www.h5py.org] [16] is an
attempt to map the HDF5 [http://www.hdfgroup.org/HDF5] [1] feature set to NumPy [http://www.numpy.org] [3] as closely as possible. In
addition, it also provides access to nearly all of the HDF5 [http://www.hdfgroup.org/HDF5] [1] C API.

Instead, PyTables builds up an additional abstraction layer on top of HDF5 [http://www.hdfgroup.org/HDF5] [1] and
NumPy [http://www.numpy.org] [3] where it implements things like an enhanced type system, an engine
for enabling complex queries, an efficient computational
kernel [http://www.pytables.org/moin/ComputingKernel] [17], advanced indexing capabilities [http://www.pytables.org/moin/PyTablesPro] [18] or an undo/redo feature, to name
just a few. This additional layer also allows PyTables to be relatively
independent of its underlying libraries (and their possible limitations). For
example, PyTables can support HDF5 [http://www.hdfgroup.org/HDF5] [1] data types like enumerated or time that
are available in the HDF5 [http://www.hdfgroup.org/HDF5] [1] library but not in the NumPy [http://www.numpy.org] [3] package; or even
perform powerful complex queries that are not implemented directly in neither
HDF5 [http://www.hdfgroup.org/HDF5] [1] nor NumPy [http://www.numpy.org] [3].

Furthermore, PyTables also tries hard to be a high performance interface to
HDF5/NumPy, implementing niceties like internal LRU caches for nodes and other
data and metadata, automatic computation of optimal chunk sizes for the datasets, a variety of compressors, ranging from
slow but efficient (bzip2 [http://www.bzip.org] [19]) to extremely fast ones (Blosc [http://blosc.pytables.org] [20]) in addition to the
standard zlib [http://zlib.net] [21]. Another difference is that PyTables makes use of numexpr [https://github.com/pydata/numexpr] [22] so
as to accelerate internal computations (for example, in evaluating complex
queries) to a maximum.

For contrasting with other opinions, you may want to check the PyTables/h5py
comparison in a similar entry of the FAQ of h5py [http://docs.h5py.org/en/latest/faq.html#what-s-the-difference-between-h5py-and-pytables] [23].

I’ve found a bug. What do I do?

The PyTables development team works hard to make this eventuality as rare as
possible, but, as in any software made by human beings, bugs do occur. If you
find any bug, please tell us by file a bug report in the issue tracker [https://github.com/PyTables/PyTables/issues] [24] on
GitHub [https://github.com] [25].

Is it possible to get involved in PyTables development?

Indeed. We are keen for more people to help out contributing code, unit tests,
documentation, and helping out maintaining this wiki. Drop us a mail on the
users mailing list and tell us in which area do you want to work.

How can I cite PyTables?

The recommended way to cite PyTables in a paper or a presentation is as
following:

	Author: Francesc Alted, Ivan Vilata and others

	Title: PyTables: Hierarchical Datasets in Python

	Year: 2002 -

	URL: http://www.pytables.org

Here’s an example of a BibTeX entry:

@Misc{,
 author = {Francesc Alted and Ivan Vilata and others},
 title = {{PyTables}: Hierarchical Datasets in {Python}},
 year = {2002--},
 url = "http://www.pytables.org/"
}

PyTables 2.x issues

I’m having problems migrating my apps from PyTables 1.x into PyTables 2.x. Please, help!

Sure. However, you should first check out the Migrating from PyTables 1.x to 2.x
document.
It should provide hints to the most frequently asked questions on this regard.

For combined searches like table.where(‘(x<5) & (x>3)’), why was a & operator chosen instead of an and?

Search expressions are in fact Python expressions written as strings, and they
are evaluated as such. This has the advantage of not having to learn a new
syntax, but it also implies some limitations with logical and and or
operators, namely that they can not be overloaded in Python. Thus, it is
impossible right now to get an element-wise operation out of an expression like
‘array1 and array2’. That’s why one has to choose some other operator, being
& and | the most similar to their C counterparts && and ||, which
aren’t available in Python either.

You should be careful about expressions like ‘x<5 & x>3’ and others like ‘3
< x < 5’ which ‘’won’t work as expected’‘, because of the different operator
precedence and the absence of an overloaded logical and operator. More on
this in the appendix about condition syntax in the HDF5 manual [http://www.hdfgroup.org/HDF5/doc/RM/RM_H5T.html] [26].

There are quite a few packages affected by those limitations including NumPy [http://www.numpy.org] [3]
themselves and SQLObject [http://sqlobject.org] [27], and there have been quite longish discussions about
adding the possibility of overloading logical operators to Python (see PEP
335 [http://www.python.org/dev/peps/pep-0335] [28] and this thread [https://mail.python.org/pipermail/python-dev/2004-September/048763.html] [30] for more details).

I can not select rows using in-kernel queries with a condition that involves an UInt64Col. Why?

This turns out to be a limitation of the numexpr [https://github.com/pydata/numexpr] [22] package. Internally,
numexpr [https://github.com/pydata/numexpr] [22] uses a limited set of types for doing calculations, and unsigned
integers are always upcasted to the immediate signed integer that can fit the
information. The problem here is that there is not a (standard) signed integer
that can be used to keep the information of a 64-bit unsigned integer.

So, your best bet right now is to avoid uint64 types if you can. If you
absolutely need uint64, the only way for doing selections with this is
through regular Python selections. For example, if your table has a colM
column which is declared as an UInt64Col, then you can still filter its
values with:

[row['colN'] for row in table if row['colM'] < X]

However, this approach will generally lead to slow speed (specially on Win32
platforms, where the values will be converted to Python long values).

I’m already using PyTables 2.x but I’m still getting numarray objects instead of NumPy ones!

This is most probably due to the fact that you are using a file created with
PyTables 1.x series. By default, PyTables 1.x was setting an HDF5 attribute
FLAVOR with the value ‘numarray’ to all leaves. Now, PyTables 2.x sees
this attribute and obediently converts the internal object (truly a NumPy
object) into a numarray one. For PyTables 2.x files the FLAVOR attribute
will only be saved when explicitly set via the leaf.flavor property (or when
passing data to an Array or Table at creation time), so you
will be able to distinguish default flavors from user-set ones by checking the
existence of the FLAVOR attribute.

Meanwhile, if you don’t want to receive numarray objects when reading old
files, you have several possibilities:

	Remove the flavor for your datasets by hand:

for leaf in h5file.walkNodes(classname='Leaf'):
 del leaf.flavor

	Use the :program:’ptrepack` utility with the flag --upgrade-flavors
so as to convert all flavors in old files to the default (effectively by
removing the FLAVOR attribute).

	Remove the numarray (and/or Numeric) package from your system.
Then PyTables 2.x will return you pure NumPy objects (it can’t be
otherwise!).

Installation issues

Windows

Error when importing tables

You have installed the binary installer for Windows and, when importing the
tables package you are getting an error like:

The command in "0x6714a822" refers to memory in "0x012011a0". The
procedure "written" could not be executed.
Click to ok to terminate.
Click to abort to debug the program.

This problem can be due to a series of reasons, but the most probable one is
that you have a version of a DLL library that is needed by PyTables and it is
not at the correct version. Please, double-check the versions of the required
libraries for PyTables and install newer versions, if needed. In most cases,
this solves the issue.

In case you continue getting problems, there are situations where other
programs do install libraries in the PATH that are optional to PyTables
(for example BZIP2 or LZO), but that they will be used if they are found in
your system (i.e. anywhere in your PATH). So, if you find any of
these libraries in your PATH, upgrade it to the latest version available (you
don’t need to re-install PyTables).

Can’t find LZO binaries for Windows

Unfortunately, the LZO binaries for Windows seems to be unavailable from its
usual place at http://gnuwin32.sourceforge.net/packages/lzo.htm. So, in order
to allow people to be able to install this excellent compressor easily, we have
packaged the LZO binaries in a zip file available at:
http://www.pytables.org/download/lzo-win. This zip file follows the same
structure that a typical GnuWin32 [http://gnuwin32.sourceforge.net] [29] package, so it is just a matter of unpacking
it in your GNUWIN32 directory and following the instructions in the PyTables Manual [http://www.pytables.org/docs/manual] [15].

Hopefully somebody else will take care again of maintaining LZO for Windows
again.

Testing issues

Tests fail when running from IPython

You may be getting errors related with Doctest when running the test suite from
IPython. This is a known limitation in IPython (see
http://lists.ipython.scipy.org/pipermail/ipython-dev/2007-April/002859.html).
Try running the test suite from the vanilla Python interpreter instead.

Tests fail when running from Python 2.5 and Numeric is installed

Numeric doesn’t get well with Python 2.5, even on 32-bit platforms. This is
a consequence of Numeric not being maintained anymore and you should consider
migrating to NumPy as soon as possible. To get rid of these errors, just
uninstall Numeric.

	[1]	(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) http://www.hdfgroup.org/HDF5

	[2]	http://www.python.org

	[3]	(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) http://www.numpy.org

	[4]	https://groups.google.com/group/pytables-users

	[5]	http://sourceforge.net/mailarchive/forum.php?forum_id=13760

	[6]	http://www.mail-archive.com/pytables-users@lists.sourceforge.net/

	[7]	http://www.hdfgroup.org/HDF5/RD100-2002/

	[8]	http://vitables.org

	[9]	(1, 2) http://www.cython.org

	[10]	http://www.pytables.org/moin/FrancescAlted

	[11]	(1, 2, 3, 4) http://www.unidata.ucar.edu/software/netcdf

	[12]	http://dirac.cnrs-orleans.fr/plone/software/scientificpython

	[13]	(1, 2) http://www.pydap.org

	[14]	http://opendap.org

	[15]	http://www.pytables.org/docs/manual

	[16]	http://www.h5py.org

	[17]	http://www.pytables.org/moin/ComputingKernel

	[18]	http://www.pytables.org/moin/PyTablesPro

	[19]	http://www.bzip.org

	[20]	http://blosc.pytables.org

	[21]	http://zlib.net

	[22]	(1, 2, 3) https://github.com/pydata/numexpr

	[23]	http://docs.h5py.org/en/latest/faq.html#what-s-the-difference-between-h5py-and-pytables

	[24]	https://github.com/PyTables/PyTables/issues

	[25]	https://github.com

	[26]	http://www.hdfgroup.org/HDF5/doc/RM/RM_H5T.html

	[27]	http://sqlobject.org

	[28]	http://www.python.org/dev/peps/pep-0335

	[29]	http://gnuwin32.sourceforge.net

	[30]	https://mail.python.org/pipermail/python-dev/2004-September/048763.html

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Other Material

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

Other Material

Videos

These are the videos of a series dedicated to introduce the main features of
PyTables in a visual and easy to grasp manner.
More videos will be made available with the time:

	HDF5 is for Lovers, SciPy 2012 Tutorial [http://www.youtube.com/watch?v=Nzx0HAd3FiI]:
a beginer’s introduction to PyTables and HDF5.

	PyTables, part I: Introduction [http://showmedo.com/videos/video?name=1780000&fromSeriesID=178]:
HDF5 file creation, the object tree, homogeneous array storage, natural
naming, working with attributes.

	PyTables, part II: Working with tables [http://showmedo.com/videos/video?name=1780010&fromSeriesID=178]:
Creation of tables with multidimensional and nested columns, and how to
efficiently query them.

Presentations

Here are the slides of some presentations about PyTables that you may find
useful:

	HDF5 is for Lovers, SciPy 2012 Tutorial, July 2012, Austin, TX, USA,
slides (pdf) [https://raw.github.com/scopatz/scipy2012/master/hdf5/scopatz_scipy2012_hdf5.pdf],
video [http://www.youtube.com/watch?v=Nzx0HAd3FiI],
exercises [https://github.com/scopatz/scipy2012/tree/master/hdf5/exer],
solutions [https://github.com/scopatz/scipy2012/tree/master/hdf5/sol], and
repository [https://github.com/scopatz/scipy2012].

	An on-disk binary data container [http://www.pytables.org/docs/PUG-Austin-2012-v3.pdf].
Talk given at the Austin Python Meetup [http://www.meetup.com/austinpython],
Austin, TX, USA (May 2012).

	Large Data Analysis with Python [http://www.pytables.org/docs/LargeDataAnalysis.pdf].
Seminar given at the German Neuroinformatics Node [http://www.g-node.org],
Munich, Germany (November 2010).

	Highly Efficient Computations In Python: Well Beyond NumPy [http://pytables.org/EuroSciPy2010/HighlyEfficientComputations.pdf].
Tutorial given at EuroSciPy 2010 [https://www.euroscipy.org/conference/euroscipy2010]
conference in Paris, France (July 2010).

	Starving CPUs (and coping with that in PyTables) [http://www.pytables.org/docs/StarvingCPUs-PyTablesUsages.pdf].
Seminar given at FOM Institute for Plasma Physics Rijnhuizen [http://www.rijnhuizen.nl/],
The Netherlands (September 2009).

	On The Data Access Issue (or Why Modern CPUs Are Starving) [http://www.pytables.org/docs/StarvingCPUs.pdf].
Keynote presented at EuroSciPy 2009 [https://www.euroscipy.org/] conference
in Leipzig, Germany (July 2009).

	An Overview of Future Improvements to OPSI [http://www.pytables.org/docs/THG-2007-PlansForNewOPSI.pdf].
Informal talk given at the THG headquarters [http://www.hdfgroup.org] in
Urbana-Champaign, Illinois, USA (October 2007).

	Finding Needles in a Huge DataStack [http://www.pytables.org/docs/FindingNeedles.pdf].
Talk given at the EuroPython 2006 Conference, held at CERN, Genève,
Switzerland (July 2006).

	Presentation given at the “HDF Workshop 2005” [http://www.pytables.org/docs/HDF_IX_Workshop.pdf], held at San Francisco,
USA (December 2005).

	I [http://www.pytables.org/docs/taller-sf1-color.pdf] and
II [http://www.pytables.org/docs/taller-sf2-color.pdf] Workshop in Free
Software and Scientific Computing given at the Universitat Jaume I,
Castelló, Spain (October 2004). In Catalan.

	Presentation given at the “SciPy Workshop 2004” [http://www.pytables.org/docs/SciPy04.pdf], held at Caltech, Pasadena,
USA (September 2004).

	Slides [http://www.pytables.org/docs/EuroPython2003.pdf] of presentation
given at EuroPython Conference in Charleroi, Belgium (June 2003).

	Presentation for the “iParty5” [http://www.pytables.org/docs/iparty2003.pdf]
held at Castelló, Spain (May 2003). In Spanish.

	Talk [http://www.pytables.org/docs/pycon2003.pdf] on PyTables given at
the PyCon 2003 Convention held at Washington, USA (March 203).

Reports

	White Paper on OPSI indexes [http://www.pytables.org/docs/OPSI-indexes.pdf],
explaining the powerful new indexing engine in PyTables Pro.

	Performance study [http://www.pytables.org/docs/NewObjectTreeCache.pdf]
on how the new object tree cache introduced in PyTables 1.2 can accelerate
the opening of files with a large number of objects, while being quite less
memory hungry.

	Paper version [http://www.pytables.org/docs/pycon2003-paper.pdf] of the
presentation at PyCon2003.

Other sources for examples

The examples presented above show just a little amount of the full capabilities
of PyTables.
Please check out the documentation and the examples/ directory in the
source package for more examples.

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Migrating from PyTables 2.x to 3.x

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

Migrating from PyTables 2.x to 3.x

	Author:	Antonio Valentino

	Author:	Anthony Scopatz

	Author:	Thomas Provoost

This document describes the major changes in PyTables in going from the
2.x to 3.x series and what you need to know when migrating downstream
code bases.

Python 3 at Last!

The PyTables 3.x series now ships with full compatibility for Python 3.1+.
Additionally, we plan on maintaining compatibility with Python 2.7 for the
foreseeable future. Python 2.6 is no longer supported but
may work in most cases. Note that the entire 3.x series now relies on
numexpr v2.1+, which itself is the first version of numexpr support both
Python 2 & 3.

Numeric, Numarray, NetCDF3, & HDF5 1.6 No More!

PyTables no longer supports numeric and numarray. Please use numpy instead.
Additionally, the tables.netcdf3 module has been removed. Please refer
to the netcdf4-python [http://code.google.com/p/netcdf4-python/] project for further support. Lastly, the older
HDF5 1.6 API is no longer supported. Please upgrade to HDF5 1.8+.

Unicode all the strings!

In Python 3, all strings are natively in Unicode. This introduces some
difficulties, as the native HDF5 string format is not Unicode-compatible.
To minimize explicit conversion troubles when writing, especially when
creating data sets from existing Python objects, string
objects are implicitly cast to non-Unicode for HDF5 storage. To make you
aware of this, a warning is raised when this happens.

This is certainly no true Unicode compatibility, but mainly for convenience
with the pure-Unicode Python 3 string type. Any string that is not castable
as ascii upon creation of your data set, will hence still raise an error.
For true Unicode support, look into the VLUnicodeAtom class.

Major API Changes

The PyTables developers, by popular demand [http://sourceforge.net/mailarchive/message.php?msg_id=29584752], have taken this opportunity
that a major version number upgrade affords to implement significant API
changes. We have tried to do this in such a way that will not immediately
break most existing code, though in some breakages may still occur.

PEP 8 Compliance

The PyTables 3.x series now follows PEP 8 [http://www.python.org/dev/peps/pep-0008/] coding standard. This makes
using PyTables more idiomatic with surrounding Python code that also adheres
to this standard. The primary way that the 2.x series was not PEP 8
compliant was with respect to variable naming conventions. Approximately
450 API variables were identified and updated for
PyTables 3.x.

To ease migration, PyTables ships with a new pt2to3 command line tool.
This tool will run over a file and replace any instances of the old variable
names with the 3.x version of the name. This tool covers the overwhelming
majority of cases was used to transition the PyTables code base itself! However,
it may also accidentally also pick up variable names in 3rd party codes that
have exactly the same name as a PyTables’ variable. This is because pt2to3
was implemented using regular expressions rather than a fancier AST-based
method. By using regexes, pt2to3 works on Python and Cython code.

pt2to3 help:

usage: pt2to3 [-h] [-r] [-p] [-o OUTPUT] [-i] filename

PyTables 2.x -> 3.x API transition tool This tool displays to standard out, so
it is common to pipe this to another file: $ pt2to3 oldfile.py > newfile.py

positional arguments:
 filename path to input file.

optional arguments:
 -h, --help show this help message and exit
 -r, --reverse reverts changes, going from 3.x -> 2.x.
 -p, --no-ignore-previous
 ignores previous_api() calls.
 -o OUTPUT output file to write to.
 -i, --inplace overwrites the file in-place.

Note that pt2to3 only works on a single file, not a a directory. However,
a simple BASH script may be written to run pt2to3 over an entire directory
and all sub-directories:

#!/bin/bash
for f in $(find .)
do
 echo $f
 pt2to3 $f > temp.txt
 mv temp.txt $f
done

Note

pt2to3 uses the argparse module that is part of the
Python standard library since Python 2.7.
Users of Python 2.6 should install argparse separately
(e.g. via pip).

The old APIs and variable names will continue to be supported for the short term,
where possible. (The major backwards incompatible changes come from the renaming
of some function and method arguments and keyword arguments.) Using the 2.x APIs
in the 3.x series, however, will issue warnings. The following is the release
plan for the warning types:

	3.0 - PendingDeprecationWarning

	3.1 - DeprecationWarning

	>=3.2 - Remove warnings, previous_api(), and _past.py; keep pt2to3,

The current plan is to maintain the old APIs for at least 2 years, though this
is subject to change.

Consistent create_xxx() Signatures

Also by popular demand, it is now possible to create all data sets (Array,
CArray, EArray, VLArray, and Table) from existing Python objects.
Constructors for these classes now accept either of the following keyword arguments:

	an obj to initialize with data

	or both atom and shape to initialize an empty structure, if possible.

These keyword arguments are also now part of the function signature for the
corresponding create_xxx() methods on the File class. These would be called
as follows:

All create methods will support the following
create_xxx(where, name, obj=obj)

All non-variable length arrays support the following:
create_xxx(where, name, atom=atom, shape=shape)

Using obj or atom and shape are mutually exclusive. Previously only
Array could be created with an existing Python object using the object
keyword argument.

API Name Changes

The following tables shows the old 2.x names that have been update to their
new values in the new 3.x series. Please use the pt2to3 tool to convert
between these.

	2.x Name
	3.x Name

	AtomFromHDF5Type
	atom_from_hdf5_type

	AtomToHDF5Type
	atom_to_hdf5_type

	BoolTypeNextAfter
	bool_type_next_after

	HDF5ClassToString
	hdf5_class_to_string

	HDF5ToNPExtType
	hdf5_to_np_ext_type

	HDF5ToNPNestedType
	hdf5_to_np_nested_type

	IObuf
	iobuf

	IObufcpy
	iobufcpy

	IntTypeNextAfter
	int_type_next_after

	NPExtPrefixesToPTKinds
	npext_prefixes_to_ptkinds

	PTSpecialKinds
	pt_special_kinds

	PTTypeToHDF5
	pttype_to_hdf5

	StringNextAfter
	string_next_after

	__allowedInitKwArgs
	__allowed_init_kwargs

	__getRootGroup
	__get_root_group

	__next__inKernel
	__next__inkernel

	_actionLogName
	_action_log_name

	_actionLogParent
	_action_log_parent

	_actionLogPath
	_action_log_path

	_addRowsToIndex
	_add_rows_to_index

	_appendZeros
	_append_zeros

	_autoIndex
	_autoindex

	_byteShape
	_byte_shape

	_c_classId
	_c_classid

	_c_shadowNameRE
	_c_shadow_name_re

	_cacheDescriptionData
	_cache_description_data

	_checkAndSetPair
	_check_and_set_pair

	_checkAttributes
	_check_attributes

	_checkBase
	_checkbase

	_checkColumn
	_check_column

	_checkGroup
	_check_group

	_checkNotClosed
	_check_not_closed

	_checkOpen
	_check_open

	_checkShape
	_check_shape

	_checkShapeAppend
	_check_shape_append

	_checkUndoEnabled
	_check_undo_enabled

	_checkWritable
	_check_writable

	_check_sortby_CSI
	_check_sortby_csi

	_closeFile
	_close_file

	_codeToOp
	_code_to_op

	_column__createIndex
	_column__create_index

	_compileCondition
	_compile_condition

	_conditionCache
	_condition_cache

	_convertTime64
	_convert_time64

	convertTime64
	_convert_time64_

	_convertTypes
	_convert_types

	_createArray
	_create_array

	_createCArray
	_create_carray

	_createMark
	_create_mark

	_createPath
	_create_path

	_createTable
	_create_table

	_createTransaction
	_create_transaction

	_createTransactionGroup
	_create_transaction_group

	_disableIndexingInQueries
	_disable_indexing_in_queries

	_doReIndex
	_do_reindex

	_emptyArrayCache
	_empty_array_cache

	_enableIndexingInQueries
	_enable_indexing_in_queries

	_enabledIndexingInQueries
	_enabled_indexing_in_queries

	_exprvarsCache
	_exprvars_cache

	_f_copyChildren
	_f_copy_children

	_f_delAttr
	_f_delattr

	_f_getAttr
	_f_getattr

	_f_getChild
	_f_get_child

	_f_isVisible
	_f_isvisible

	_f_iterNodes
	_f_iter_nodes

	_f_listNodes
	_f_list_nodes

	_f_setAttr
	_f_setattr

	_f_walkGroups
	_f_walk_groups

	_f_walkNodes
	_f_walknodes

	_fancySelection
	_fancy_selection

	_fillCol
	_fill_col

	_flushBufferedRows
	_flush_buffered_rows

	_flushFile
	_flush_file

	_flushModRows
	_flush_mod_rows

	_g_addChildrenNames
	_g_add_children_names

	_g_checkGroup
	_g_check_group

	_g_checkHasChild
	_g_check_has_child

	_g_checkName
	_g_check_name

	_g_checkNotContains
	_g_check_not_contains

	_g_checkOpen
	_g_check_open

	_g_closeDescendents
	_g_close_descendents

	_g_closeGroup
	_g_close_group

	_g_copyAsChild
	_g_copy_as_child

	_g_copyChildren
	_g_copy_children

	_g_copyRows
	_g_copy_rows

	_g_copyRows_optim
	_g_copy_rows_optim

	_g_copyWithStats
	_g_copy_with_stats

	_g_createHardLink
	_g_create_hard_link

	_g_delAndLog
	_g_del_and_log

	_g_delLocation
	_g_del_location

	_g_flushGroup
	_g_flush_group

	_g_getAttr
	_g_getattr

	_g_getChildGroupClass
	_g_get_child_group_class

	_g_getChildLeafClass
	_g_get_child_leaf_class

	_g_getGChildAttr
	_g_get_gchild_attr

	_g_getLChildAttr
	_g_get_lchild_attr

	_g_getLinkClass
	_g_get_link_class

	_g_listAttr
	_g_list_attr

	_g_listGroup
	_g_list_group

	_g_loadChild
	_g_load_child

	_g_logAdd
	_g_log_add

	_g_logCreate
	_g_log_create

	_g_logMove
	_g_log_move

	_g_maybeRemove
	_g_maybe_remove

	_g_moveNode
	_g_move_node

	_g_postInitHook
	_g_post_init_hook

	_g_postReviveHook
	_g_post_revive_hook

	_g_preKillHook
	_g_pre_kill_hook

	_g_propIndexes
	_g_prop_indexes

	_g_readCoords
	_g_read_coords

	_g_readSelection
	_g_read_selection

	_g_readSlice
	_g_read_slice

	_g_readSortedSlice
	_g_read_sorted_slice

	_g_refNode
	_g_refnode

	_g_removeAndLog
	_g_remove_and_log

	_g_setAttr
	_g_setattr

	_g_setLocation
	_g_set_location

	_g_setNestedNamesDescr
	_g_set_nested_names_descr

	_g_setPathNames
	_g_set_path_names

	_g_unrefNode
	_g_unrefnode

	_g_updateDependent
	_g_update_dependent

	_g_updateLocation
	_g_update_location

	_g_updateNodeLocation
	_g_update_node_location

	_g_updateTableLocation
	_g_update_table_location

	_g_widthWarning
	_g_width_warning

	_g_writeCoords
	_g_write_coords

	_g_writeSelection
	_g_write_selection

	_g_writeSlice
	_g_write_slice

	_getColumnInstance
	_get_column_instance

	_getConditionKey
	_get_condition_key

	_getContainer
	_get_container

	_getEnumMap
	_get_enum_map

	_getFileId
	_get_file_id

	_getFinalAction
	_get_final_action

	_getInfo
	_get_info

	_getLinkClass
	_get_link_class

	_getMarkID
	_get_mark_id

	_getNode
	_get_node

	_getOrCreatePath
	_get_or_create_path

	_getTypeColNames
	_get_type_col_names

	_getUnsavedNrows
	_get_unsaved_nrows

	_getValueFromContainer
	_get_value_from_container

	_hiddenNameRE
	_hidden_name_re

	_hiddenPathRE
	_hidden_path_re

	_indexNameOf
	_index_name_of

	indexNameOf
	_index_name_of_

	_indexPathnameOf
	_index_pathname_of

	_indexPathnameOfColumn
	_index_pathname_of_column

	indexPathnameOfColumn
	_index_pathname_of_column_

	indexPathnameOf
	_index_pathname_of_

	_initLoop
	_init_loop

	_initSortedSlice
	_init_sorted_slice

	_isWritable
	_iswritable

	_is_CSI
	_is_csi

	_killNode
	_killnode

	_lineChunkSize
	_line_chunksize

	_lineSeparator
	_line_separator

	_markColumnsAsDirty
	_mark_columns_as_dirty

	_newBuffer
	_new_buffer

	_notReadableError
	_not_readable_error

	_npSizeType
	_npsizetype

	_nxTypeFromNPType
	_nxtype_from_nptype

	_opToCode
	_op_to_code

	_openArray
	_open_array

	_openUnImplemented
	_open_unimplemented

	_pointSelection
	_point_selection

	_processRange
	_process_range

	_processRangeRead
	_process_range_read

	_pythonIdRE
	_python_id_re

	_reIndex
	_reindex

	_readArray
	_read_array

	_readCoordinates
	_read_coordinates

	_readCoords
	_read_coords

	_readIndexSlice
	_read_index_slice

	_readSelection
	_read_selection

	_readSlice
	_read_slice

	_readSortedSlice
	_read_sorted_slice

	_refNode
	_refnode

	_requiredExprVars
	_required_expr_vars

	_reservedIdRE
	_reserved_id_re

	_reviveNode
	_revivenode

	_saveBufferedRows
	_save_buffered_rows

	_searchBin
	_search_bin

	_searchBinNA_b
	_search_bin_na_b

	_searchBinNA_d
	_search_bin_na_d

	_searchBinNA_e
	_search_bin_na_e

	_searchBinNA_f
	_search_bin_na_f

	_searchBinNA_g
	_search_bin_na_g

	_searchBinNA_i
	_search_bin_na_i

	_searchBinNA_ll
	_search_bin_na_ll

	_searchBinNA_s
	_search_bin_na_s

	_searchBinNA_ub
	_search_bin_na_ub

	_searchBinNA_ui
	_search_bin_na_ui

	_searchBinNA_ull
	_search_bin_na_ull

	_searchBinNA_us
	_search_bin_na_us

	_setAttributes
	_set_attributes

	_setColumnIndexing
	_set_column_indexing

	_shadowName
	_shadow_name

	_shadowParent
	_shadow_parent

	_shadowPath
	_shadow_path

	_sizeToShape
	_size_to_shape

	_tableColumnPathnameOfIndex
	_table_column_pathname_of_index

	_tableFile
	_table_file

	_tablePath
	_table_path

	_table__autoIndex
	_table__autoindex

	_table__getautoIndex
	_table__getautoindex

	_table__setautoIndex
	_table__setautoindex

	_table__whereIndexed
	_table__where_indexed

	_transGroupName
	_trans_group_name

	_transGroupParent
	_trans_group_parent

	_transGroupPath
	_trans_group_path

	_transName
	_trans_name

	_transParent
	_trans_parent

	_transPath
	_trans_path

	_transVersion
	_trans_version

	_unrefNode
	_unrefnode

	_updateNodeLocations
	_update_node_locations

	_useIndex
	_use_index

	_vShape
	_vshape

	_vType
	_vtype

	_v__nodeFile
	_v__nodefile

	_v__nodePath
	_v__nodepath

	_v_colObjects
	_v_colobjects

	_v_maxGroupWidth
	_v_max_group_width

	_v_maxTreeDepth
	_v_maxtreedepth

	_v_nestedDescr
	_v_nested_descr

	_v_nestedFormats
	_v_nested_formats

	_v_nestedNames
	_v_nested_names

	_v_objectID
	_v_objectid

	_whereCondition
	_where_condition

	_writeCoords
	_write_coords

	_writeSelection
	_write_selection

	_writeSlice
	_write_slice

	appendLastRow
	append_last_row

	attrFromShadow
	attr_from_shadow

	attrToShadow
	attr_to_shadow

	autoIndex
	autoindex

	bufcoordsData
	bufcoords_data

	calcChunksize
	calc_chunksize

	checkFileAccess
	check_file_access

	checkNameValidity
	check_name_validity

	childName
	childname

	chunkmapData
	chunkmap_data

	classIdDict
	class_id_dict

	className
	classname

	classNameDict
	class_name_dict

	containerRef
	containerref

	convertToNPAtom
	convert_to_np_atom

	convertToNPAtom2
	convert_to_np_atom2

	copyChildren
	copy_children

	copyClass
	copyclass

	copyFile
	copy_file

	copyLeaf
	copy_leaf

	copyNode
	copy_node

	copyNodeAttrs
	copy_node_attrs

	countLoggedInstances
	count_logged_instances

	createArray
	create_array

	createCArray
	create_carray

	createCSIndex
	create_csindex

	createEArray
	create_earray

	createExternalLink
	create_external_link

	createGroup
	create_group

	createHardLink
	create_hard_link

	createIndex
	create_index

	createIndexesDescr
	create_indexes_descr

	createIndexesTable
	create_indexes_table

	createNestedType
	create_nested_type

	createSoftLink
	create_soft_link

	createTable
	create_table

	createVLArray
	create_vlarray

	defaultAutoIndex
	default_auto_index

	defaultIndexFilters
	default_index_filters

	delAttr
	del_attr

	delAttrs
	_del_attrs

	delNodeAttr
	del_node_attr

	detectNumberOfCores
	detect_number_of_cores

	disableUndo
	disable_undo

	dumpGroup
	dump_group

	dumpLeaf
	dump_leaf

	dumpLoggedInstances
	dump_logged_instances

	enableUndo
	enable_undo

	enumFromHDF5
	enum_from_hdf5

	enumToHDF5
	enum_to_hdf5

	fetchLoggedInstances
	fetch_logged_instances

	flushRowsToIndex
	flush_rows_to_index

	getAttr
	get_attr

	getAttrs
	_get_attrs

	getClassByName
	get_class_by_name

	getColsInOrder
	get_cols_in_order

	getCurrentMark
	get_current_mark

	getEnum
	get_enum

	getFilters
	get_filters

	getHDF5Version
	get_hdf5_version

	getIndices
	get_indices

	getLRUbounds
	get_lru_bounds

	getLRUsorted
	get_lru_sorted

	getLookupRange
	get_lookup_range

	getNestedField
	get_nested_field

	getNestedFieldCache
	get_nested_field_cache

	getNestedType
	get_nested_type

	getNode
	get_node

	getNodeAttr
	get_node_attr

	getPyTablesVersion
	get_pytables_version

	getTypeEnum
	get_type_enum

	getWhereList
	get_where_list

	hdf5Extension
	hdf5extension

	hdf5Version
	hdf5_version

	indexChunk
	indexchunk

	indexValid
	indexvalid

	indexValidData
	index_valid_data

	indexValues
	indexvalues

	indexValuesData
	index_values_data

	indexesExtension
	indexesextension

	infType
	inftype

	infinityF
	infinityf

	infinityMap
	infinitymap

	initRead
	initread

	isHDF5File
	is_hdf5_file

	isPyTablesFile
	is_pytables_file

	isUndoEnabled
	is_undo_enabled

	isVisible
	isvisible

	isVisibleName
	isvisiblename

	isVisibleNode
	is_visible_node

	isVisiblePath
	isvisiblepath

	is_CSI
	is_csi

	iterNodes
	iter_nodes

	iterseqMaxElements
	iterseq_max_elements

	joinPath
	join_path

	joinPaths
	join_paths

	linkExtension
	linkextension

	listLoggedInstances
	list_logged_instances

	listNodes
	list_nodes

	loadEnum
	load_enum

	logInstanceCreation
	log_instance_creation

	lrucacheExtension
	lrucacheextension

	metaIsDescription
	MetaIsDescription

	modifyColumn
	modify_column

	modifyColumns
	modify_columns

	modifyCoordinates
	modify_coordinates

	modifyRows
	modify_rows

	moveFromShadow
	move_from_shadow

	moveNode
	move_node

	moveToShadow
	move_to_shadow

	newNode
	new_node

	newSet
	newset

	newdstGroup
	newdst_group

	objectID
	object_id

	oldPathname
	oldpathname

	openFile
	open_file

	openNode
	open_node

	parentNode
	parentnode

	parentPath
	parentpath

	reIndex
	reindex

	reIndexDirty
	reindex_dirty

	readCoordinates
	read_coordinates

	readIndices
	read_indices

	readSlice
	read_slice

	readSorted
	read_sorted

	readWhere
	read_where

	read_sliceLR
	read_slice_lr

	recreateIndexes
	recreate_indexes

	redoAddAttr
	redo_add_attr

	redoCreate
	redo_create

	redoDelAttr
	redo_del_attr

	redoMove
	redo_move

	redoRemove
	redo_remove

	removeIndex
	remove_index

	removeNode
	remove_node

	removeRows
	remove_rows

	renameNode
	rename_node

	rootUEP
	root_uep

	searchLastRow
	search_last_row

	setAttr
	set_attr

	setAttrs
	_set_attrs

	setBloscMaxThreads
	set_blosc_max_threads

	setInputsRange
	set_inputs_range

	setNodeAttr
	set_node_attr

	setOutput
	set_output

	setOutputRange
	set_output_range

	silenceHDF5Messages
	silence_hdf5_messages

	splitPath
	split_path

	tableExtension
	tableextension

	undoAddAttr
	undo_add_attr

	undoCreate
	undo_create

	undoDelAttr
	undo_del_attr

	undoMove
	undo_move

	undoRemove
	undo_remove

	utilsExtension
	utilsextension

	walkGroups
	walk_groups

	walkNodes
	walk_nodes

	whereAppend
	append_where

	whereCond
	wherecond

	whichClass
	which_class

	whichLibVersion
	which_lib_version

	willQueryUseIndexing
	will_query_use_indexing

Enjoy data!

The PyTables Developers

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Downloads

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

Downloads

Stable Versions

The stable versions of PyTables can be downloaded from the file download
area [http://sourceforge.net/projects/pytables/files/pytables] on SourceForge.net. The full distribution contains a copy of this
documentation in HTML. The documentation in both HTML and PDF formats can
also be downloaded separately from the same URL.

A pure source version of the package (mainly intended for developers and
packagers) is available on the tags page [https://github.com/PyTables/PyTables/tags] on GitHub. It contains all files
under SCM but not the (generated) files, HTML doc and cythonized C
extensions, so it is smaller that the standard package (about 3.5MB).

Windows binaries can be obtained from many different distributions, like
Python(x,y) [http://code.google.com/p/pythonxy], ActiveState [http://www.activestate.com/activepython], or Enthought [https://www.enthought.com/products/epd].
In addition, Christoph Gohlke normally does an excellent job by providing
binaries for many interesting software on his
website [http://www.lfd.uci.edu/~gohlke/pythonlibs/].

You may be interested to install the latest released stable version:

$ pip install tables

Or, you may prefer to install the stable version in Git repository
using pip. For example, for the stable 3.1 series, you can do:

$ pip install --install-option='--prefix=<PREFIX>' \
-e git+https://github.com/PyTables/PyTables.git@v.3.1#egg=tables

Bleeding Edge Versions

The latest, coolest, and possibly buggiest ;-) sources can be obtained from
the new github repository:

https://github.com/PyTables/PyTables

A snapshot [https://github.com/PyTables/PyTables/archive/develop.zip] of
the code in development is also available on the GitHub project page [https://github.com/PyTables/PyTables].

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 PyTables Release Notes

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

PyTables Release Notes

Migration

	Migrating from 2.x to 3.x

	Migrating from 1.x to 2.x

PyTables

	Release notes for PyTables 3.3 series

	Release notes for PyTables 3.2 series

	Release notes for PyTables 3.2 series

	Changes from 3.1.0 to 3.1.1

	Changes from 3.0 to 3.1.0

	Release notes for PyTables 3.0 series

	Release notes for PyTables 2.4 series

	Release notes for PyTables 2.3 series

	Release notes for PyTables 2.2 series

	Release notes for PyTables 2.1 series

	Release notes for PyTables 2.0 series

	What’s new in PyTables 1.4

	What’s new in PyTables 1.3.3

	What’s new in PyTables 1.3.2

	What’s new in PyTables 1.3.1

	What’s new in PyTables 1.3

	What’s new in PyTables 1.2.3

	What’s new in PyTables 1.2.2

	What’s new in PyTables 1.2.1

	What’s new in PyTables 1.2

	What’s new in PyTables 1.1.1

	What’s new in PyTables 1.1

	What’s new in PyTables 1.0

	What’s new in PyTables 0.9.1

	What’s new in PyTables 0.9

	What’s new in PyTables 0.8

	What’s new in PyTables 0.7.2

	PyTables 0.7.1 is out!

PyTables Pro

	Release notes for PyTables 2.2 series

	Release notes for PyTables 2.1 series

	Release notes for PyTables Pro 2.0 series

Release timeline

	PyTables
	3.3
	2016-09-12

	PyTables
	3.2.3.1
	2016-07-05

	PyTables
	3.2.3
	2016-07-04

	PyTables
	3.2.2
	2015-09-22

	PyTables
	3.2.1.1
	2015-08-31

	PyTables
	3.2.1
	2015-08-04

	PyTables
	3.2.0
	2015-05-06

	PyTables
	3.2.0rc2
	2015-05-01

	PyTables
	3.2.0rc1
	2015-04-21

	PyTables
	3.1.1
	2014-03-25

	PyTables
	3.1.0
	2014-02-05

	PyTables
	3.1.0rc2
	2014-01-22

	PyTables
	3.1.0rc1
	2014-01-17

	PyTables
	3.0
	2013-06-01

	PyTables
	3.0rc3
	2013-05-29

	PyTables
	3.0rc2
	2013-05-17

	PyTables
	3.0rc1
	2013-05-10

	PyTables
	3.0b1
	2013-04-27

	PyTables
	2.4
	2012-07-20

	PyTables
	2.4rc1
	2012-07-16

	PyTables
	2.4b1
	2012-07-07

	PyTables
	2.3.1
	2011-10-28

	PyTables
	2.3
	2011-09-23

	PyTables
	2.3rc1
	2011-09-11

	PyTables
	2.2.1
	2010-11-05

	PyTables
	2.2.1rc1
	2010-11-03

	Pytables
	2.2
	2010-07-01

	PyTables
	2.2rc2
	2010-06-17

	PyTables
	2.2rc1
	2010-05-20

	PyTables
	2.1.2
	2009-09-14

	PyTables
	2.1.1
	2009-03-13

	PyTables Pro
	2.1.1
	2009-03-13

	PyTables
	2.1
	2008-12-19

	PyTables
	2.1rc2
	2008-11-18

	PyTables
	2.1rc1
	2008-10-31

	PyTables
	2.0.4
	2008-07-05

	PyTables Pro
	2.0.4
	2008-07-05

	PyTables
	2.0.3
	2008-03-07

	PyTables Pro
	2.0.2.1
	2007-12-24

	PyTables Pro
	2.0.1
	2007-09-20

	PyTables
	2.0.1
	2007-09-20

	PyTables Pro
	2.0
	2007-07-12

	PyTables
	2.0
	2007-07-12

	PyTables
	2.0rc2
	2007-05-28

	PyTables
	2.0rc1
	2007-04-26

	PyTables
	1.4
	2006-12-21

	PyTables
	1.3.3
	2006-08-24

	PyTables
	1.3.2
	2006-06-20

	PyTables
	1.3.1
	2006-05-02

	PyTables
	1.3
	2006-04-01

	PyTables
	1.2.3
	2006-02-23

	PyTables
	1.2.2
	2006-02-16

	PyTables
	1.2.1
	2005-12-21

	PyTables
	1.2
	2005-11-22

	PyTables
	1.1.1
	2005-09-13

	PyTables
	1.1
	2005-07-14

	PyTables
	1.0
	2005-05-12

	PyTables
	0.9.1
	2004-12-02

	PyTables-
	0.9
	2004-11-08

	PyTables
	0.8.1
	2004-07-13

	PyTables
	0.8
	2004-03-03

	PyTables
	0.7.2
	2003-09-22

	PyTables
	0.7
	2003-07-31

	PyTables
	0.5.1
	2003-05-14

	PyTables
	0.5
	2003-05-10

	Pytables
	0.4
	2003-03-19

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Migrating from PyTables 2.x to 3.x

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

Migrating from PyTables 2.x to 3.x

	Author:	Antonio Valentino

	Author:	Anthony Scopatz

	Author:	Thomas Provoost

This document describes the major changes in PyTables in going from the
2.x to 3.x series and what you need to know when migrating downstream
code bases.

Python 3 at Last!

The PyTables 3.x series now ships with full compatibility for Python 3.1+.
Additionally, we plan on maintaining compatibility with Python 2.7 for the
foreseeable future. Python 2.6 is no longer supported but
may work in most cases. Note that the entire 3.x series now relies on
numexpr v2.1+, which itself is the first version of numexpr support both
Python 2 & 3.

Numeric, Numarray, NetCDF3, & HDF5 1.6 No More!

PyTables no longer supports numeric and numarray. Please use numpy instead.
Additionally, the tables.netcdf3 module has been removed. Please refer
to the netcdf4-python [http://code.google.com/p/netcdf4-python/] project for further support. Lastly, the older
HDF5 1.6 API is no longer supported. Please upgrade to HDF5 1.8+.

Unicode all the strings!

In Python 3, all strings are natively in Unicode. This introduces some
difficulties, as the native HDF5 string format is not Unicode-compatible.
To minimize explicit conversion troubles when writing, especially when
creating data sets from existing Python objects, string
objects are implicitly cast to non-Unicode for HDF5 storage. To make you
aware of this, a warning is raised when this happens.

This is certainly no true Unicode compatibility, but mainly for convenience
with the pure-Unicode Python 3 string type. Any string that is not castable
as ascii upon creation of your data set, will hence still raise an error.
For true Unicode support, look into the VLUnicodeAtom class.

Major API Changes

The PyTables developers, by popular demand [http://sourceforge.net/mailarchive/message.php?msg_id=29584752], have taken this opportunity
that a major version number upgrade affords to implement significant API
changes. We have tried to do this in such a way that will not immediately
break most existing code, though in some breakages may still occur.

PEP 8 Compliance

The PyTables 3.x series now follows PEP 8 [http://www.python.org/dev/peps/pep-0008/] coding standard. This makes
using PyTables more idiomatic with surrounding Python code that also adheres
to this standard. The primary way that the 2.x series was not PEP 8
compliant was with respect to variable naming conventions. Approximately
450 API variables were identified and updated for
PyTables 3.x.

To ease migration, PyTables ships with a new pt2to3 command line tool.
This tool will run over a file and replace any instances of the old variable
names with the 3.x version of the name. This tool covers the overwhelming
majority of cases was used to transition the PyTables code base itself! However,
it may also accidentally also pick up variable names in 3rd party codes that
have exactly the same name as a PyTables’ variable. This is because pt2to3
was implemented using regular expressions rather than a fancier AST-based
method. By using regexes, pt2to3 works on Python and Cython code.

pt2to3 help:

usage: pt2to3 [-h] [-r] [-p] [-o OUTPUT] [-i] filename

PyTables 2.x -> 3.x API transition tool This tool displays to standard out, so
it is common to pipe this to another file: $ pt2to3 oldfile.py > newfile.py

positional arguments:
 filename path to input file.

optional arguments:
 -h, --help show this help message and exit
 -r, --reverse reverts changes, going from 3.x -> 2.x.
 -p, --no-ignore-previous
 ignores previous_api() calls.
 -o OUTPUT output file to write to.
 -i, --inplace overwrites the file in-place.

Note that pt2to3 only works on a single file, not a a directory. However,
a simple BASH script may be written to run pt2to3 over an entire directory
and all sub-directories:

#!/bin/bash
for f in $(find .)
do
 echo $f
 pt2to3 $f > temp.txt
 mv temp.txt $f
done

Note

pt2to3 uses the argparse module that is part of the
Python standard library since Python 2.7.
Users of Python 2.6 should install argparse separately
(e.g. via pip).

The old APIs and variable names will continue to be supported for the short term,
where possible. (The major backwards incompatible changes come from the renaming
of some function and method arguments and keyword arguments.) Using the 2.x APIs
in the 3.x series, however, will issue warnings. The following is the release
plan for the warning types:

	3.0 - PendingDeprecationWarning

	3.1 - DeprecationWarning

	>=3.2 - Remove warnings, previous_api(), and _past.py; keep pt2to3,

The current plan is to maintain the old APIs for at least 2 years, though this
is subject to change.

Consistent create_xxx() Signatures

Also by popular demand, it is now possible to create all data sets (Array,
CArray, EArray, VLArray, and Table) from existing Python objects.
Constructors for these classes now accept either of the following keyword arguments:

	an obj to initialize with data

	or both atom and shape to initialize an empty structure, if possible.

These keyword arguments are also now part of the function signature for the
corresponding create_xxx() methods on the File class. These would be called
as follows:

All create methods will support the following
create_xxx(where, name, obj=obj)

All non-variable length arrays support the following:
create_xxx(where, name, atom=atom, shape=shape)

Using obj or atom and shape are mutually exclusive. Previously only
Array could be created with an existing Python object using the object
keyword argument.

API Name Changes

The following tables shows the old 2.x names that have been update to their
new values in the new 3.x series. Please use the pt2to3 tool to convert
between these.

	2.x Name
	3.x Name

	AtomFromHDF5Type
	atom_from_hdf5_type

	AtomToHDF5Type
	atom_to_hdf5_type

	BoolTypeNextAfter
	bool_type_next_after

	HDF5ClassToString
	hdf5_class_to_string

	HDF5ToNPExtType
	hdf5_to_np_ext_type

	HDF5ToNPNestedType
	hdf5_to_np_nested_type

	IObuf
	iobuf

	IObufcpy
	iobufcpy

	IntTypeNextAfter
	int_type_next_after

	NPExtPrefixesToPTKinds
	npext_prefixes_to_ptkinds

	PTSpecialKinds
	pt_special_kinds

	PTTypeToHDF5
	pttype_to_hdf5

	StringNextAfter
	string_next_after

	__allowedInitKwArgs
	__allowed_init_kwargs

	__getRootGroup
	__get_root_group

	__next__inKernel
	__next__inkernel

	_actionLogName
	_action_log_name

	_actionLogParent
	_action_log_parent

	_actionLogPath
	_action_log_path

	_addRowsToIndex
	_add_rows_to_index

	_appendZeros
	_append_zeros

	_autoIndex
	_autoindex

	_byteShape
	_byte_shape

	_c_classId
	_c_classid

	_c_shadowNameRE
	_c_shadow_name_re

	_cacheDescriptionData
	_cache_description_data

	_checkAndSetPair
	_check_and_set_pair

	_checkAttributes
	_check_attributes

	_checkBase
	_checkbase

	_checkColumn
	_check_column

	_checkGroup
	_check_group

	_checkNotClosed
	_check_not_closed

	_checkOpen
	_check_open

	_checkShape
	_check_shape

	_checkShapeAppend
	_check_shape_append

	_checkUndoEnabled
	_check_undo_enabled

	_checkWritable
	_check_writable

	_check_sortby_CSI
	_check_sortby_csi

	_closeFile
	_close_file

	_codeToOp
	_code_to_op

	_column__createIndex
	_column__create_index

	_compileCondition
	_compile_condition

	_conditionCache
	_condition_cache

	_convertTime64
	_convert_time64

	convertTime64
	_convert_time64_

	_convertTypes
	_convert_types

	_createArray
	_create_array

	_createCArray
	_create_carray

	_createMark
	_create_mark

	_createPath
	_create_path

	_createTable
	_create_table

	_createTransaction
	_create_transaction

	_createTransactionGroup
	_create_transaction_group

	_disableIndexingInQueries
	_disable_indexing_in_queries

	_doReIndex
	_do_reindex

	_emptyArrayCache
	_empty_array_cache

	_enableIndexingInQueries
	_enable_indexing_in_queries

	_enabledIndexingInQueries
	_enabled_indexing_in_queries

	_exprvarsCache
	_exprvars_cache

	_f_copyChildren
	_f_copy_children

	_f_delAttr
	_f_delattr

	_f_getAttr
	_f_getattr

	_f_getChild
	_f_get_child

	_f_isVisible
	_f_isvisible

	_f_iterNodes
	_f_iter_nodes

	_f_listNodes
	_f_list_nodes

	_f_setAttr
	_f_setattr

	_f_walkGroups
	_f_walk_groups

	_f_walkNodes
	_f_walknodes

	_fancySelection
	_fancy_selection

	_fillCol
	_fill_col

	_flushBufferedRows
	_flush_buffered_rows

	_flushFile
	_flush_file

	_flushModRows
	_flush_mod_rows

	_g_addChildrenNames
	_g_add_children_names

	_g_checkGroup
	_g_check_group

	_g_checkHasChild
	_g_check_has_child

	_g_checkName
	_g_check_name

	_g_checkNotContains
	_g_check_not_contains

	_g_checkOpen
	_g_check_open

	_g_closeDescendents
	_g_close_descendents

	_g_closeGroup
	_g_close_group

	_g_copyAsChild
	_g_copy_as_child

	_g_copyChildren
	_g_copy_children

	_g_copyRows
	_g_copy_rows

	_g_copyRows_optim
	_g_copy_rows_optim

	_g_copyWithStats
	_g_copy_with_stats

	_g_createHardLink
	_g_create_hard_link

	_g_delAndLog
	_g_del_and_log

	_g_delLocation
	_g_del_location

	_g_flushGroup
	_g_flush_group

	_g_getAttr
	_g_getattr

	_g_getChildGroupClass
	_g_get_child_group_class

	_g_getChildLeafClass
	_g_get_child_leaf_class

	_g_getGChildAttr
	_g_get_gchild_attr

	_g_getLChildAttr
	_g_get_lchild_attr

	_g_getLinkClass
	_g_get_link_class

	_g_listAttr
	_g_list_attr

	_g_listGroup
	_g_list_group

	_g_loadChild
	_g_load_child

	_g_logAdd
	_g_log_add

	_g_logCreate
	_g_log_create

	_g_logMove
	_g_log_move

	_g_maybeRemove
	_g_maybe_remove

	_g_moveNode
	_g_move_node

	_g_postInitHook
	_g_post_init_hook

	_g_postReviveHook
	_g_post_revive_hook

	_g_preKillHook
	_g_pre_kill_hook

	_g_propIndexes
	_g_prop_indexes

	_g_readCoords
	_g_read_coords

	_g_readSelection
	_g_read_selection

	_g_readSlice
	_g_read_slice

	_g_readSortedSlice
	_g_read_sorted_slice

	_g_refNode
	_g_refnode

	_g_removeAndLog
	_g_remove_and_log

	_g_setAttr
	_g_setattr

	_g_setLocation
	_g_set_location

	_g_setNestedNamesDescr
	_g_set_nested_names_descr

	_g_setPathNames
	_g_set_path_names

	_g_unrefNode
	_g_unrefnode

	_g_updateDependent
	_g_update_dependent

	_g_updateLocation
	_g_update_location

	_g_updateNodeLocation
	_g_update_node_location

	_g_updateTableLocation
	_g_update_table_location

	_g_widthWarning
	_g_width_warning

	_g_writeCoords
	_g_write_coords

	_g_writeSelection
	_g_write_selection

	_g_writeSlice
	_g_write_slice

	_getColumnInstance
	_get_column_instance

	_getConditionKey
	_get_condition_key

	_getContainer
	_get_container

	_getEnumMap
	_get_enum_map

	_getFileId
	_get_file_id

	_getFinalAction
	_get_final_action

	_getInfo
	_get_info

	_getLinkClass
	_get_link_class

	_getMarkID
	_get_mark_id

	_getNode
	_get_node

	_getOrCreatePath
	_get_or_create_path

	_getTypeColNames
	_get_type_col_names

	_getUnsavedNrows
	_get_unsaved_nrows

	_getValueFromContainer
	_get_value_from_container

	_hiddenNameRE
	_hidden_name_re

	_hiddenPathRE
	_hidden_path_re

	_indexNameOf
	_index_name_of

	indexNameOf
	_index_name_of_

	_indexPathnameOf
	_index_pathname_of

	_indexPathnameOfColumn
	_index_pathname_of_column

	indexPathnameOfColumn
	_index_pathname_of_column_

	indexPathnameOf
	_index_pathname_of_

	_initLoop
	_init_loop

	_initSortedSlice
	_init_sorted_slice

	_isWritable
	_iswritable

	_is_CSI
	_is_csi

	_killNode
	_killnode

	_lineChunkSize
	_line_chunksize

	_lineSeparator
	_line_separator

	_markColumnsAsDirty
	_mark_columns_as_dirty

	_newBuffer
	_new_buffer

	_notReadableError
	_not_readable_error

	_npSizeType
	_npsizetype

	_nxTypeFromNPType
	_nxtype_from_nptype

	_opToCode
	_op_to_code

	_openArray
	_open_array

	_openUnImplemented
	_open_unimplemented

	_pointSelection
	_point_selection

	_processRange
	_process_range

	_processRangeRead
	_process_range_read

	_pythonIdRE
	_python_id_re

	_reIndex
	_reindex

	_readArray
	_read_array

	_readCoordinates
	_read_coordinates

	_readCoords
	_read_coords

	_readIndexSlice
	_read_index_slice

	_readSelection
	_read_selection

	_readSlice
	_read_slice

	_readSortedSlice
	_read_sorted_slice

	_refNode
	_refnode

	_requiredExprVars
	_required_expr_vars

	_reservedIdRE
	_reserved_id_re

	_reviveNode
	_revivenode

	_saveBufferedRows
	_save_buffered_rows

	_searchBin
	_search_bin

	_searchBinNA_b
	_search_bin_na_b

	_searchBinNA_d
	_search_bin_na_d

	_searchBinNA_e
	_search_bin_na_e

	_searchBinNA_f
	_search_bin_na_f

	_searchBinNA_g
	_search_bin_na_g

	_searchBinNA_i
	_search_bin_na_i

	_searchBinNA_ll
	_search_bin_na_ll

	_searchBinNA_s
	_search_bin_na_s

	_searchBinNA_ub
	_search_bin_na_ub

	_searchBinNA_ui
	_search_bin_na_ui

	_searchBinNA_ull
	_search_bin_na_ull

	_searchBinNA_us
	_search_bin_na_us

	_setAttributes
	_set_attributes

	_setColumnIndexing
	_set_column_indexing

	_shadowName
	_shadow_name

	_shadowParent
	_shadow_parent

	_shadowPath
	_shadow_path

	_sizeToShape
	_size_to_shape

	_tableColumnPathnameOfIndex
	_table_column_pathname_of_index

	_tableFile
	_table_file

	_tablePath
	_table_path

	_table__autoIndex
	_table__autoindex

	_table__getautoIndex
	_table__getautoindex

	_table__setautoIndex
	_table__setautoindex

	_table__whereIndexed
	_table__where_indexed

	_transGroupName
	_trans_group_name

	_transGroupParent
	_trans_group_parent

	_transGroupPath
	_trans_group_path

	_transName
	_trans_name

	_transParent
	_trans_parent

	_transPath
	_trans_path

	_transVersion
	_trans_version

	_unrefNode
	_unrefnode

	_updateNodeLocations
	_update_node_locations

	_useIndex
	_use_index

	_vShape
	_vshape

	_vType
	_vtype

	_v__nodeFile
	_v__nodefile

	_v__nodePath
	_v__nodepath

	_v_colObjects
	_v_colobjects

	_v_maxGroupWidth
	_v_max_group_width

	_v_maxTreeDepth
	_v_maxtreedepth

	_v_nestedDescr
	_v_nested_descr

	_v_nestedFormats
	_v_nested_formats

	_v_nestedNames
	_v_nested_names

	_v_objectID
	_v_objectid

	_whereCondition
	_where_condition

	_writeCoords
	_write_coords

	_writeSelection
	_write_selection

	_writeSlice
	_write_slice

	appendLastRow
	append_last_row

	attrFromShadow
	attr_from_shadow

	attrToShadow
	attr_to_shadow

	autoIndex
	autoindex

	bufcoordsData
	bufcoords_data

	calcChunksize
	calc_chunksize

	checkFileAccess
	check_file_access

	checkNameValidity
	check_name_validity

	childName
	childname

	chunkmapData
	chunkmap_data

	classIdDict
	class_id_dict

	className
	classname

	classNameDict
	class_name_dict

	containerRef
	containerref

	convertToNPAtom
	convert_to_np_atom

	convertToNPAtom2
	convert_to_np_atom2

	copyChildren
	copy_children

	copyClass
	copyclass

	copyFile
	copy_file

	copyLeaf
	copy_leaf

	copyNode
	copy_node

	copyNodeAttrs
	copy_node_attrs

	countLoggedInstances
	count_logged_instances

	createArray
	create_array

	createCArray
	create_carray

	createCSIndex
	create_csindex

	createEArray
	create_earray

	createExternalLink
	create_external_link

	createGroup
	create_group

	createHardLink
	create_hard_link

	createIndex
	create_index

	createIndexesDescr
	create_indexes_descr

	createIndexesTable
	create_indexes_table

	createNestedType
	create_nested_type

	createSoftLink
	create_soft_link

	createTable
	create_table

	createVLArray
	create_vlarray

	defaultAutoIndex
	default_auto_index

	defaultIndexFilters
	default_index_filters

	delAttr
	del_attr

	delAttrs
	_del_attrs

	delNodeAttr
	del_node_attr

	detectNumberOfCores
	detect_number_of_cores

	disableUndo
	disable_undo

	dumpGroup
	dump_group

	dumpLeaf
	dump_leaf

	dumpLoggedInstances
	dump_logged_instances

	enableUndo
	enable_undo

	enumFromHDF5
	enum_from_hdf5

	enumToHDF5
	enum_to_hdf5

	fetchLoggedInstances
	fetch_logged_instances

	flushRowsToIndex
	flush_rows_to_index

	getAttr
	get_attr

	getAttrs
	_get_attrs

	getClassByName
	get_class_by_name

	getColsInOrder
	get_cols_in_order

	getCurrentMark
	get_current_mark

	getEnum
	get_enum

	getFilters
	get_filters

	getHDF5Version
	get_hdf5_version

	getIndices
	get_indices

	getLRUbounds
	get_lru_bounds

	getLRUsorted
	get_lru_sorted

	getLookupRange
	get_lookup_range

	getNestedField
	get_nested_field

	getNestedFieldCache
	get_nested_field_cache

	getNestedType
	get_nested_type

	getNode
	get_node

	getNodeAttr
	get_node_attr

	getPyTablesVersion
	get_pytables_version

	getTypeEnum
	get_type_enum

	getWhereList
	get_where_list

	hdf5Extension
	hdf5extension

	hdf5Version
	hdf5_version

	indexChunk
	indexchunk

	indexValid
	indexvalid

	indexValidData
	index_valid_data

	indexValues
	indexvalues

	indexValuesData
	index_values_data

	indexesExtension
	indexesextension

	infType
	inftype

	infinityF
	infinityf

	infinityMap
	infinitymap

	initRead
	initread

	isHDF5File
	is_hdf5_file

	isPyTablesFile
	is_pytables_file

	isUndoEnabled
	is_undo_enabled

	isVisible
	isvisible

	isVisibleName
	isvisiblename

	isVisibleNode
	is_visible_node

	isVisiblePath
	isvisiblepath

	is_CSI
	is_csi

	iterNodes
	iter_nodes

	iterseqMaxElements
	iterseq_max_elements

	joinPath
	join_path

	joinPaths
	join_paths

	linkExtension
	linkextension

	listLoggedInstances
	list_logged_instances

	listNodes
	list_nodes

	loadEnum
	load_enum

	logInstanceCreation
	log_instance_creation

	lrucacheExtension
	lrucacheextension

	metaIsDescription
	MetaIsDescription

	modifyColumn
	modify_column

	modifyColumns
	modify_columns

	modifyCoordinates
	modify_coordinates

	modifyRows
	modify_rows

	moveFromShadow
	move_from_shadow

	moveNode
	move_node

	moveToShadow
	move_to_shadow

	newNode
	new_node

	newSet
	newset

	newdstGroup
	newdst_group

	objectID
	object_id

	oldPathname
	oldpathname

	openFile
	open_file

	openNode
	open_node

	parentNode
	parentnode

	parentPath
	parentpath

	reIndex
	reindex

	reIndexDirty
	reindex_dirty

	readCoordinates
	read_coordinates

	readIndices
	read_indices

	readSlice
	read_slice

	readSorted
	read_sorted

	readWhere
	read_where

	read_sliceLR
	read_slice_lr

	recreateIndexes
	recreate_indexes

	redoAddAttr
	redo_add_attr

	redoCreate
	redo_create

	redoDelAttr
	redo_del_attr

	redoMove
	redo_move

	redoRemove
	redo_remove

	removeIndex
	remove_index

	removeNode
	remove_node

	removeRows
	remove_rows

	renameNode
	rename_node

	rootUEP
	root_uep

	searchLastRow
	search_last_row

	setAttr
	set_attr

	setAttrs
	_set_attrs

	setBloscMaxThreads
	set_blosc_max_threads

	setInputsRange
	set_inputs_range

	setNodeAttr
	set_node_attr

	setOutput
	set_output

	setOutputRange
	set_output_range

	silenceHDF5Messages
	silence_hdf5_messages

	splitPath
	split_path

	tableExtension
	tableextension

	undoAddAttr
	undo_add_attr

	undoCreate
	undo_create

	undoDelAttr
	undo_del_attr

	undoMove
	undo_move

	undoRemove
	undo_remove

	utilsExtension
	utilsextension

	walkGroups
	walk_groups

	walkNodes
	walk_nodes

	whereAppend
	append_where

	whereCond
	wherecond

	whichClass
	which_class

	whichLibVersion
	which_lib_version

	willQueryUseIndexing
	will_query_use_indexing

Enjoy data!

The PyTables Developers

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Migrating from PyTables 1.x to 2.x

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

Migrating from PyTables 1.x to 2.x

	Author:	Francesc Alted i Abad

	Contact:	faltet@pytables.com

	Author:	Ivan Vilata i Balaguer

	Contact:	ivan@selidor.net

Next are described a series of issues that you must have in mind when
migrating from PyTables 1.x to PyTables 2.x series.

New type system

In PyTables 2.x all the data types for leaves are described through a couple
of classes:

	
	Atom: Describes homogeneous types of the atomic components in *Array

	objects (Array, CArray, EArray and VLArray).

	Description: Describes (possibly nested) heterogeneous types in
Table objects.

So, in order to upgrade to the new type system, you must perform the next
replacements:

	*Array.stype –> *Array.atom.type (PyTables type)

	*Array.type –> *Array.atom.dtype (NumPy type)

	*Array.itemsize –> *Array.atom.itemsize (the size of the item)

Furthermore, the PyTables types (previously called “string types”) have
changed to better adapt to NumPy conventions. The next changes have been
applied:

	PyTables types are now written in lower case, so ‘Type’ becomes ‘type’. For
example, ‘Int64’ becomes now ‘int64’.

	‘CharType’ –> ‘string’

	‘Complex32’, ‘Complex64’ –> ‘complex64’, ‘complex128’. Note that the
numeric part of a ‘complex’ type refers now to the size in bits of the
type and not to the precision, as before.

See Appendix I of the Users’ Manual on supported data types for more
information on the new PyTables types.

Important changes in Atom specification

	The dtype argument of EnumAtom and EnumCol constructors
has been replaced by the base argument, which can take a
full-blown atom, although it accepts bare PyTables types as well.
This is a mandatory argument now.

	vlstring pseudo-atoms used in VLArray nodes do no longer imply UTF-8
(nor any other) encoding, they only store and load raw strings of bytes.
All encoding and decoding is left to the user. Be warned that reading old
files may yield raw UTF-8 encoded strings, which may be coverted back to
Unicode in this way:

unistr = vlarray[index].decode('utf-8')

If you need to work with variable-length Unicode strings, you may want to
use the new vlunicode pseudo-atom, which fully supports Unicode strings
with no encoding hassles.

	Finally, Atom and Col are now abstract classes, so you can’t use
them to create atoms or column definitions of an arbitrary type. If you
know the particular type you need, use the proper subclass; otherwise, use
the Atom.from_*() or Col.from_*() factory methods. See the section
on declarative classes in the reference.

You are also advised to avoid using the inheritance of atoms to check for
their kind or type; for that purpose, use their kind and type
attributes.

New query system

	In-kernel conditions, since they are based now in Numexpr, must be written
as strings. For example, a condition that in 1.x was stated as:

result = [row['col2'] for row in table.where(table.cols.col1 == 1)]

now should read:

result = [row['col2'] for row in table.where('col1 == 1')]

That means that complex selections are possible now:

result = [row['col2'] for row in
 table.where('(col1 == 1) & (col3**4 > 1)')]

	For the same reason, conditions for indexed columns must be written as
strings as well.

New indexing system

The indexing system has been totally rewritten from scratch for PyTables 2.0
Pro Edition (http://www.pytables.com/moin/PyTablesPro). The new indexing
systemsame has been included into PyTables with release 2.3. Due to this,
your existing indexes created with PyTables 1.x will be useless, and although
you will be able to continue using the actual data in files, you won’t be
able to take advantage of any improvement in speed.

You will be offered the possibility to automatically re-create the indexes
in PyTables 1.x format to the new 2.0 format by using the ptrepack
utility.

New meanings for atom shape and *Array shape argument

With PyTables 1.x, the atom shape was used for different goals depending on
the context it was used. For example, in createEArray(), the shape of the
atom was used to specify the dataset shape of the object on disk, while in
CArray the same atom shape was used to specify the chunk shape of the
dataset on disk. Moreover, for VLArray objects, the very same atom shape
specified the type shape of the data type. As you see, all of these was
quite a mess.

Starting with PyTables 2.x, an Atom only specifies properties of the data
type (à la VLArray in 1.x). This lets the door open for specifying
multidimensional data types (that can be part of another layer of
multidimensional datasets) in a consistent way along all the *Array
objects in PyTables.

As a consequence of this, File.createCArray() and File.createVLArray()
methods have received new parameters in order to make possible to specify the
shapes of the datasets as well as chunk sizes (in fact, it is possible now to
specify the latter for all the chunked leaves, see below). Please have this
in mind during the migration process.

Another consequence is that, now that the meaning of the atom shape is clearly
defined, it has been chosen as the main object to describe homogeneous data
types in PyTables. See the Users’ Manual for more info on this.

New argument chunkshape of chunked leaves

It is possible now to specify the chunk shape for all the chunked leaves in
PyTables (all except Array). With PyTables 1.x this value was
automatically calculated so as to achieve decent results in most of the
situations. However, the user may be interested in specifying its own chunk
shape based on her own needs (although this should be done only by advanced
users).

Of course, if this parameter is not specified, a sensible default is
calculated for the size of the leave (which is recommended).

A new attribute called chunkshape has been added to all leaves. It is
read-only (you can’t change the size of chunks once you have created a leaf),
but it can be useful for inspection by advanced users.

New flavor specification

As of 2.x, flavors can only be set through the flavor attribute of
leaves, and they are persistent, so changing a flavor requires that the file
be writable.

Flavors can no longer be set through File.create*() methods, nor the
flavor argument previously found in some Table methods, nor through
Atom constructors or the _v_flavor attribute of descriptions.

System attributes can be deleted now

The protection against removing system attributes (like FILTERS,
FLAVOR or CLASS, to name only a few) has been completely removed. It
is now the responsibility of the user to make a proper use of this freedom.
With this, users can get rid of all proprietary PyTables attributes if they
want to (for example, for making a file to look more like an HDF5 native one).

Byteorder issues

Now, all the data coming from reads and internal buffers is always converted
on-the-fly, if needed, to the native byteorder. This represents a big
advantage in terms of speed when operating with objects coming from files that
have been created in machines with a byte ordering different from native.

Besides, all leaf constructors have received a new byteorder parameter
that allows specifying the byteorder of data on disk. In particular, a
_v_byteorder entry in a Table description is no longer honored and you
should use the aforementioned byteorder parameter.

Tunable internal buffer sizes

You can change the size of the internal buffers for I/O purposes of PyTables
by changing the value of the new public attribute nrowsinbuf that is
present in all leaves. By default, this contains a sensible value so as to
achieve a good balance between speed and memory consumption. Be careful when
changing it, if you don’t want to get unwanted results (very slow I/O, huge
memory consumption...).

Changes to module names

If your application is directly accessing modules under the tables
package, you need to know that the names of all modules are now all in
lowercase. This allows one to tell apart the tables.Array class from
the tables.array module (which was also called tables.Array before).
This includes subpackages like tables.nodes.FileNode.

On top of that, more-or-less independent modules have also been renamed and
some of them grouped into subpackages. The most important are:

	The tables.netcdf3 subpackage replaces the old tables.NetCDF module.

	The tables.nra subpackage replaces the old nestedrecords.py with the
implementation of the NestedRecArray class.

Also, the tables.misc package includes utility modules which do not depend
on PyTables.

Other changes

	Filters.complib is None for filter properties created with
complevel=0 (i.e. disabled compression, which is the default).

	‘non-relevant’ –> ‘irrelevant’ (applied to byteorders)

	Table.colstypes –> Table.coltypes

	Table.coltypes –> Table.coldtypes

	Added Table.coldescr, dictionary of the Col descriptions.

	Table.colshapes has disappeared. You can get it this way:

colshapes = dict((name, col.shape)
 for (name, col) in table.coldescr.iteritems())

	Table.colitemsizes has disappeared. You can get it this way:

colitemsizes = dict((name, col.itemsize)
 for (name, col) in table.coldescr.iteritems())

	Description._v_totalsize –> Description._v_itemsize

	Description._v_itemsizes and Description._v_totalsizes have
disappeared.

	Leaf._v_chunksize –> Leaf.chunkshape

Enjoy data!

The PyTables Team

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Release notes for PyTables 3.3 series

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

Release notes for PyTables 3.3 series

	Author:	PyTables Developers

	Contact:	pytables-dev@googlegroups.com

Changes from 3.2.3.1 to 3.3

Improvements

	Single codebase Python 2 and 3 support (PR #493).

	Internal Blosc version updated to 1.11.1 (closes gh-541 [https://github.com/PyTables/PyTables/issues/541])

	Full BitShuffle support for new Blosc versions (>= 1.8).

	It is now possible to remove all rows from a table.

	It is now possible to read reference types by dereferencing them as
numpy array of objects (closes gh-518 [https://github.com/PyTables/PyTables/issues/518] and gh-519 [https://github.com/PyTables/PyTables/issues/519]).
Thanks to Ehsan Azar

	Get rid of the -native compile flag (closes gh-503 [https://github.com/PyTables/PyTables/issues/503])

	The default number of threads to run numexpr (MAX_NUMEXPR_THREADS)
internally has been raised from 2 to 4. This is because we are in
2016 and 4 core configurations are becoming common.

	In order to avoid locking issues when using PyTables concurrently in
several process, MAX_BLOSC_THREADS has been set to 1 by default. If
you are running PyTables in one single process, you may want to
experiment if higher values (like 2 or 4) bring better performance for
you.

Bugs fixed

	On python 3 try ‘latin1’ encoding before ‘bytes’ encoding during unpickling
of node attributes pickled on python 2. Better fix for gh-560 [https://github.com/PyTables/PyTables/issues/560].

	Fixed Windows 32 and 64-bit builds.

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Release notes for PyTables 3.2 series

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

Release notes for PyTables 3.2 series

	Author:	PyTables Developers

	Contact:	pytables-dev@googlegroups.com

Changes from 3.2.3 to 3.2.3.1

Fixed issues with pip install.

Changes from 3.2.2 to 3.2.3

Improvements

	It is now possible to use HDF5 with the new shared library naming scheme
(>= 1.8.10, hdf5.dll instead of hdf5dll.dll) on Windows (gh-540 [https://github.com/PyTables/PyTables/issues/540]).
Thanks to Tadeu Manoel.

	Now :program: ptdump sorts output by node name and does not print a
backtrace if file cannot be opened.
Thanks to Zbigniew Jędrzejewski-Szmek.

Bugs fixed

	Only run tables.tests.test_basics.UnicodeFilename if the filesystem
encoding is utf-8. Closes gh-485 [https://github.com/PyTables/PyTables/issues/485].

	Add lib64 to posix search path. (closes gh-507 [https://github.com/PyTables/PyTables/issues/507])
Thanks to Mehdi Sadeghi.

	Ensure cache entries are removed if fewer than 10 (closes gh-529 [https://github.com/PyTables/PyTables/issues/529]).
Thanks to Graham Jones.

	Fix segmentation fault in a number of test cases that use
index.Index (closes gh-532 [https://github.com/PyTables/PyTables/issues/532] and gh-533 [https://github.com/PyTables/PyTables/issues/533]).
Thanks to Diane Trout.

	Fixed the evaluation of transcendental functions when numexpr is
compiled with VML support (closes gh-534 [https://github.com/PyTables/PyTables/issues/534], PR #536).
Thanks to Tom Kooij.

	Make sure that index classes use buffersizes that are a multiple
of chunkshape[0] (closes gh-538 [https://github.com/PyTables/PyTables/issues/538], PR #538).
Thanks to Tom Kooij.

	Ensure benchmark paths exist before benchmarks are executed (PR #544).
Thanks to rohitjamuar.

Other changes

	Minimum Cython [http://cython.org] version is now v0.21

Changes from 3.2.1.1 to 3.2.2

Bug fixed

	Fix AssertionError in Row.__init_loop. See gh-477 [https://github.com/PyTables/PyTables/issues/477].

	Fix issues with Cython 0.23. See gh-481 [https://github.com/PyTables/PyTables/issues/481].

	Only run tables.tests.test_basics.UnicodeFilename if the filesystem
encoding is utf-8. Closes gh-485 [https://github.com/PyTables/PyTables/issues/485].

	Fix missing missing PyErr_Clear. See gh-#486 [https://github.com/PyTables/PyTables/issues/#486].

	Fix the C type of some numpy attributes. See gh-494 [https://github.com/PyTables/PyTables/issues/494].

	Cast selection indices to integer. See gh-496 [https://github.com/PyTables/PyTables/issues/496].

	Fix indexesextension._keysort_string. Closes gh-497 [https://github.com/PyTables/PyTables/issues/497] and gh-498 [https://github.com/PyTables/PyTables/issues/498].

Changes from 3.2.1 to 3.2.1.1

	Fix permission on distributed source distribution

Other changes

	Minimum Cython [http://cython.org] version is now v0.21

Changes from 3.2.0 to 3.2.1

Bug fixed

	Fix indexesextension._keysort. Fixes gh-455 [https://github.com/PyTables/PyTables/issues/455]. Thanks to Andrew Lin.

Changes from 3.1.1 to 3.2.0

Improvements

	The nrowsinbuf is better computed now for EArray/CArray having
a small chunkshape in the main dimension. Fixes #285.

	PyTables should be installable very friendly via pip, including NumPy
being installed automatically in the unlikely case it is not yet
installed in the system. Thanks to Andrea Bedini.

	setup.py has been largely simplified and now it requires setuptools.
Although we think this is a good step, please keep us informed this is
breaking some installation in a very bad manner.

	setup.py now is able to used pkg-config, if available, to locate required
libraries (hdf5, bzip2, etc.). The use of pkg-config can be controlled
via setup.py command line flags or via environment variables.
Please refer to the installation guide (in the User Manual) for details.
Closes gh-442 [https://github.com/PyTables/PyTables/issues/442].

	It is now possible to create a new node whose parent is a softlink to another
group (see gh-422 [https://github.com/PyTables/PyTables/issues/422]). Thanks to Alistair Muldal.

	link.SoftLink objects no longer need to be explicitly dereferenced.
Methods and attributes of the linked object are now automatically accessed
when the user acts on a soft-link (see gh-399 [https://github.com/PyTables/PyTables/issues/399]).
Thanks to Alistair Muldal.

	Now ptrepack recognizes hardlinks and replicates them in the
output (repacked) file. This saves disk space and makes repacked files
more conformal to the original one. Closes gh-380 [https://github.com/PyTables/PyTables/issues/380].

	New pttree script for printing HDF5 file contents as a pretty
ASCII tree (closes gh-400 [https://github.com/PyTables/PyTables/issues/400]). Thanks to Alistair Muldal.

	The internal Blosc library has been downgraded to version 1.4.4. This
is in order to still allow using multiple threads inside Blosc, even
on multithreaded applications (see gh-411 [https://github.com/PyTables/PyTables/issues/411], gh-412 [https://github.com/PyTables/PyTables/issues/412],
gh-437 [https://github.com/PyTables/PyTables/issues/437] and gh-448 [https://github.com/PyTables/PyTables/issues/448]).

	The print_versions() function now also reports the version of
compression libraries used by Blosc.

	Now the setup.py tries to use the ‘-march=native’ C flag by
default. In falls back on ‘-msse2’ if ‘-march=native’ is not supported
by the compiler. Closes gh-379 [https://github.com/PyTables/PyTables/issues/379].

	Fixed a spurious unicode comparison warning (closes gh-372 [https://github.com/PyTables/PyTables/issues/372] and
gh-373 [https://github.com/PyTables/PyTables/issues/373]).

	Improved handling of empty string attributes. In previous versions of
PyTables empty string were stored as scalar HDF5 attributes having size 1
and value ‘0’ (an empty null terminated string).
Now empty string are stored as HDF5 attributes having zero size

	Added a new cookbook recipe and a couple of examples for simple threading
with PyTables.

	The redundant utilsextension.get_indices() function has been
eliminated (replaced by slice.indices()). Closes gh-195 [https://github.com/PyTables/PyTables/issues/195].

	Allow negative indices in point selection (closes gh-360 [https://github.com/PyTables/PyTables/issues/360])

	Index wasn’t being used if it claimed there were no results.
Closes gh-351 [https://github.com/PyTables/PyTables/issues/351] (see also gh-353 [https://github.com/PyTables/PyTables/issues/353])

	Atoms and Col types are no longer generated dynamically so now it is easier
for IDEs and static analysis tool to handle them (closes gh-345 [https://github.com/PyTables/PyTables/issues/345])

	The keysort functions in idx-opt.c have been cythonised using fused types.
The perfomance is mostly unchanged, but the code is much more simpler now.
Thanks to Andrea Bedini.

	Small unit tests re-factoring:

	
	print_versions() and tests.common.print_heavy() functions

	moved to the tests.common module

	always use print_versions() when test modules are called as scripts

	use the unittest2 [https://pypi.python.org/pypi/unittest2] package in Python 2.6.x

	removed internal machinery used to replicate unittest2 [https://pypi.python.org/pypi/unittest2] features

	always use tests.common.PyTablesTestCase as base class for all
test cases

	code of the old tasts.common.cleanup() function has been moved to
tests.common.PyTablesTestCase.tearDown() method

	new implementation of tests.common.PyTablesTestCase.assertWarns()
compatible with the one provided by the standard unittest module
in Python >= 3.2

	use tests.common.PyTablesTestCase.assertWarns() as context manager
when appropriate

	use the unittest.skipIf() decorator when appropriate

	new :class:tests.comon.TestFileMixin: class

Bugs fixed

	Fixed compatibility problems with numpy 1.9 and 1.10-dev
(closes gh-362 [https://github.com/PyTables/PyTables/issues/362] and gh-366 [https://github.com/PyTables/PyTables/issues/366])

	Fixed compatibility with Cython >= 0.20 (closes gh-386 [https://github.com/PyTables/PyTables/issues/386] and
gh-387 [https://github.com/PyTables/PyTables/issues/387])

	Fixed support for unicode node names in LRU cache (only Python 2 was
affected). Closes gh-367 [https://github.com/PyTables/PyTables/issues/367] and gh-369 [https://github.com/PyTables/PyTables/issues/369].

	Fixed support for unicode node titles (only Python 2 was affected).
Closes gh-370 [https://github.com/PyTables/PyTables/issues/370] and gh-374 [https://github.com/PyTables/PyTables/issues/374].

	Fixed a bug that caused the silent truncation of unicode attributes
containing the ‘0’ character. Closes gh-371 [https://github.com/PyTables/PyTables/issues/371].

	Fixed descr_from_dtype() to work as expected with complex types.
Closes gh-381 [https://github.com/PyTables/PyTables/issues/381].

	Fixed the tests.test_basics.ThreadingTestCase test case.
Closes gh-359 [https://github.com/PyTables/PyTables/issues/359].

	Fix incomplete results when performing the same query twice and exhausting
the second iterator before the first. The first one writes incomplete
results to seqcache (gh-353 [https://github.com/PyTables/PyTables/issues/353])

	Fix false results potentially going to seqcache if
tableextension.Row.update() is used during iteration
(see gh-353 [https://github.com/PyTables/PyTables/issues/353])

	Fix Column.create_csindex() when there’s NaNs

	Fixed handling of unicode file names on windows (closes gh-389 [https://github.com/PyTables/PyTables/issues/389])

	No longer not modify sys.argv at import time (closes gh-405 [https://github.com/PyTables/PyTables/issues/405])

	Fixed a performance issue on NFS (closes gh-402 [https://github.com/PyTables/PyTables/issues/402])

	Fixed a nasty problem affecting results of indexed queries.
Closes gh-319 [https://github.com/PyTables/PyTables/issues/319] and probably gh-419 [https://github.com/PyTables/PyTables/issues/419] too.

	Fixed another problem affecting results of indexed queries too.
Closes gh-441 [https://github.com/PyTables/PyTables/issues/441].

	Replaced “len(xrange(start, stop, step))” -> “len(xrange(0, stop -
start, step))” to fix issues with large row counts with Python 2.x.
Fixes #447.

Other changes

	Cython is not a hard dependency anymore (although developers will need it
so as to generated the C extension code).

	The number of threads used by default for numexpr and Blosc operation that
was set to the number of available cores have been reduced to 2. This is
a much more reasonable setting for not creating too much overhead.

Enjoy data!

– The PyTables Developers

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Release notes for PyTables 3.2 series

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

Release notes for PyTables 3.2 series

	Author:	PyTables Developers

	Contact:	pytables-dev@googlegroups.com

Changes from 3.2.3 to 3.2.3.1

Fixed issues with pip install.

Changes from 3.2.2 to 3.2.3

Improvements

	It is now possible to use HDF5 with the new shared library naming scheme
(>= 1.8.10, hdf5.dll instead of hdf5dll.dll) on Windows (gh-540 [https://github.com/PyTables/PyTables/issues/540]).
Thanks to Tadeu Manoel.

	Now :program: ptdump sorts output by node name and does not print a
backtrace if file cannot be opened.
Thanks to Zbigniew Jędrzejewski-Szmek.

Bugs fixed

	Only run tables.tests.test_basics.UnicodeFilename if the filesystem
encoding is utf-8. Closes gh-485 [https://github.com/PyTables/PyTables/issues/485].

	Add lib64 to posix search path. (closes gh-507 [https://github.com/PyTables/PyTables/issues/507])
Thanks to Mehdi Sadeghi.

	Ensure cache entries are removed if fewer than 10 (closes gh-529 [https://github.com/PyTables/PyTables/issues/529]).
Thanks to Graham Jones.

	Fix segmentation fault in a number of test cases that use
index.Index (closes gh-532 [https://github.com/PyTables/PyTables/issues/532] and gh-533 [https://github.com/PyTables/PyTables/issues/533]).
Thanks to Diane Trout.

	Fixed the evaluation of transcendental functions when numexpr is
compiled with VML support (closes gh-534 [https://github.com/PyTables/PyTables/issues/534], PR #536).
Thanks to Tom Kooij.

	Make sure that index classes use buffersizes that are a multiple
of chunkshape[0] (closes gh-538 [https://github.com/PyTables/PyTables/issues/538], PR #538).
Thanks to Tom Kooij.

	Ensure benchmark paths exist before benchmarks are executed (PR #544).
Thanks to rohitjamuar.

Other changes

	Minimum Cython [http://cython.org] version is now v0.21

Changes from 3.2.1.1 to 3.2.2

Bug fixed

	Fix AssertionError in Row.__init_loop. See gh-477 [https://github.com/PyTables/PyTables/issues/477].

	Fix issues with Cython 0.23. See gh-481 [https://github.com/PyTables/PyTables/issues/481].

	Only run tables.tests.test_basics.UnicodeFilename if the filesystem
encoding is utf-8. Closes gh-485 [https://github.com/PyTables/PyTables/issues/485].

	Fix missing missing PyErr_Clear. See gh-#486 [https://github.com/PyTables/PyTables/issues/#486].

	Fix the C type of some numpy attributes. See gh-494 [https://github.com/PyTables/PyTables/issues/494].

	Cast selection indices to integer. See gh-496 [https://github.com/PyTables/PyTables/issues/496].

	Fix indexesextension._keysort_string. Closes gh-497 [https://github.com/PyTables/PyTables/issues/497] and gh-498 [https://github.com/PyTables/PyTables/issues/498].

Changes from 3.2.1 to 3.2.1.1

	Fix permission on distributed source distribution

Other changes

	Minimum Cython [http://cython.org] version is now v0.21

Changes from 3.2.0 to 3.2.1

Bug fixed

	Fix indexesextension._keysort. Fixes gh-455 [https://github.com/PyTables/PyTables/issues/455]. Thanks to Andrew Lin.

Changes from 3.1.1 to 3.2.0

Improvements

	The nrowsinbuf is better computed now for EArray/CArray having
a small chunkshape in the main dimension. Fixes #285.

	PyTables should be installable very friendly via pip, including NumPy
being installed automatically in the unlikely case it is not yet
installed in the system. Thanks to Andrea Bedini.

	setup.py has been largely simplified and now it requires setuptools.
Although we think this is a good step, please keep us informed this is
breaking some installation in a very bad manner.

	setup.py now is able to used pkg-config, if available, to locate required
libraries (hdf5, bzip2, etc.). The use of pkg-config can be controlled
via setup.py command line flags or via environment variables.
Please refer to the installation guide (in the User Manual) for details.
Closes gh-442 [https://github.com/PyTables/PyTables/issues/442].

	It is now possible to create a new node whose parent is a softlink to another
group (see gh-422 [https://github.com/PyTables/PyTables/issues/422]). Thanks to Alistair Muldal.

	link.SoftLink objects no longer need to be explicitly dereferenced.
Methods and attributes of the linked object are now automatically accessed
when the user acts on a soft-link (see gh-399 [https://github.com/PyTables/PyTables/issues/399]).
Thanks to Alistair Muldal.

	Now ptrepack recognizes hardlinks and replicates them in the
output (repacked) file. This saves disk space and makes repacked files
more conformal to the original one. Closes gh-380 [https://github.com/PyTables/PyTables/issues/380].

	New pttree script for printing HDF5 file contents as a pretty
ASCII tree (closes gh-400 [https://github.com/PyTables/PyTables/issues/400]). Thanks to Alistair Muldal.

	The internal Blosc library has been downgraded to version 1.4.4. This
is in order to still allow using multiple threads inside Blosc, even
on multithreaded applications (see gh-411 [https://github.com/PyTables/PyTables/issues/411], gh-412 [https://github.com/PyTables/PyTables/issues/412],
gh-437 [https://github.com/PyTables/PyTables/issues/437] and gh-448 [https://github.com/PyTables/PyTables/issues/448]).

	The print_versions() function now also reports the version of
compression libraries used by Blosc.

	Now the setup.py tries to use the ‘-march=native’ C flag by
default. In falls back on ‘-msse2’ if ‘-march=native’ is not supported
by the compiler. Closes gh-379 [https://github.com/PyTables/PyTables/issues/379].

	Fixed a spurious unicode comparison warning (closes gh-372 [https://github.com/PyTables/PyTables/issues/372] and
gh-373 [https://github.com/PyTables/PyTables/issues/373]).

	Improved handling of empty string attributes. In previous versions of
PyTables empty string were stored as scalar HDF5 attributes having size 1
and value ‘0’ (an empty null terminated string).
Now empty string are stored as HDF5 attributes having zero size

	Added a new cookbook recipe and a couple of examples for simple threading
with PyTables.

	The redundant utilsextension.get_indices() function has been
eliminated (replaced by slice.indices()). Closes gh-195 [https://github.com/PyTables/PyTables/issues/195].

	Allow negative indices in point selection (closes gh-360 [https://github.com/PyTables/PyTables/issues/360])

	Index wasn’t being used if it claimed there were no results.
Closes gh-351 [https://github.com/PyTables/PyTables/issues/351] (see also gh-353 [https://github.com/PyTables/PyTables/issues/353])

	Atoms and Col types are no longer generated dynamically so now it is easier
for IDEs and static analysis tool to handle them (closes gh-345 [https://github.com/PyTables/PyTables/issues/345])

	The keysort functions in idx-opt.c have been cythonised using fused types.
The perfomance is mostly unchanged, but the code is much more simpler now.
Thanks to Andrea Bedini.

	Small unit tests re-factoring:

	
	print_versions() and tests.common.print_heavy() functions

	moved to the tests.common module

	always use print_versions() when test modules are called as scripts

	use the unittest2 [https://pypi.python.org/pypi/unittest2] package in Python 2.6.x

	removed internal machinery used to replicate unittest2 [https://pypi.python.org/pypi/unittest2] features

	always use tests.common.PyTablesTestCase as base class for all
test cases

	code of the old tasts.common.cleanup() function has been moved to
tests.common.PyTablesTestCase.tearDown() method

	new implementation of tests.common.PyTablesTestCase.assertWarns()
compatible with the one provided by the standard unittest module
in Python >= 3.2

	use tests.common.PyTablesTestCase.assertWarns() as context manager
when appropriate

	use the unittest.skipIf() decorator when appropriate

	new :class:tests.comon.TestFileMixin: class

Bugs fixed

	Fixed compatibility problems with numpy 1.9 and 1.10-dev
(closes gh-362 [https://github.com/PyTables/PyTables/issues/362] and gh-366 [https://github.com/PyTables/PyTables/issues/366])

	Fixed compatibility with Cython >= 0.20 (closes gh-386 [https://github.com/PyTables/PyTables/issues/386] and
gh-387 [https://github.com/PyTables/PyTables/issues/387])

	Fixed support for unicode node names in LRU cache (only Python 2 was
affected). Closes gh-367 [https://github.com/PyTables/PyTables/issues/367] and gh-369 [https://github.com/PyTables/PyTables/issues/369].

	Fixed support for unicode node titles (only Python 2 was affected).
Closes gh-370 [https://github.com/PyTables/PyTables/issues/370] and gh-374 [https://github.com/PyTables/PyTables/issues/374].

	Fixed a bug that caused the silent truncation of unicode attributes
containing the ‘0’ character. Closes gh-371 [https://github.com/PyTables/PyTables/issues/371].

	Fixed descr_from_dtype() to work as expected with complex types.
Closes gh-381 [https://github.com/PyTables/PyTables/issues/381].

	Fixed the tests.test_basics.ThreadingTestCase test case.
Closes gh-359 [https://github.com/PyTables/PyTables/issues/359].

	Fix incomplete results when performing the same query twice and exhausting
the second iterator before the first. The first one writes incomplete
results to seqcache (gh-353 [https://github.com/PyTables/PyTables/issues/353])

	Fix false results potentially going to seqcache if
tableextension.Row.update() is used during iteration
(see gh-353 [https://github.com/PyTables/PyTables/issues/353])

	Fix Column.create_csindex() when there’s NaNs

	Fixed handling of unicode file names on windows (closes gh-389 [https://github.com/PyTables/PyTables/issues/389])

	No longer not modify sys.argv at import time (closes gh-405 [https://github.com/PyTables/PyTables/issues/405])

	Fixed a performance issue on NFS (closes gh-402 [https://github.com/PyTables/PyTables/issues/402])

	Fixed a nasty problem affecting results of indexed queries.
Closes gh-319 [https://github.com/PyTables/PyTables/issues/319] and probably gh-419 [https://github.com/PyTables/PyTables/issues/419] too.

	Fixed another problem affecting results of indexed queries too.
Closes gh-441 [https://github.com/PyTables/PyTables/issues/441].

	Replaced “len(xrange(start, stop, step))” -> “len(xrange(0, stop -
start, step))” to fix issues with large row counts with Python 2.x.
Fixes #447.

Other changes

	Cython is not a hard dependency anymore (although developers will need it
so as to generated the C extension code).

	The number of threads used by default for numexpr and Blosc operation that
was set to the number of available cores have been reduced to 2. This is
a much more reasonable setting for not creating too much overhead.

Enjoy data!

– The PyTables Developers

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Changes from 3.1.0 to 3.1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

Changes from 3.1.0 to 3.1.1

Bugs fixed

	Fixed a critical bug that caused an exception at import time.
The error was triggered when a bug in long-double detection is detected
in the HDF5 library (see gh-275 [https://github.com/PyTables/PyTables/issues/275]) and numpy [http://www.numpy.org] does not expose
float96 or float128. Closes gh-344 [https://github.com/PyTables/PyTables/issues/344].

	The internal Blosc [http://www.blosc.org] library has been updated to version 1.3.5.
This fixes a false buffer overrun condition that made c-blosc to fail,
even if the problem was not real.

Improvements

	Do not create a temporary array when the obj parameter is not specified
in File.create_array() (thanks to Francesc).
Closes gh-337 [https://github.com/PyTables/PyTables/issues/337] and gh-339 [https://github.com/PyTables/PyTables/issues/339]).

	Added two new utility functions
(tables.nodes.filenode.read_from_filenode() and
tables.nodes.filenode.save_to_filenode()) for the direct copy from
filesystem to filenode and vice versa (closes gh-342 [https://github.com/PyTables/PyTables/issues/342]).
Thanks to Andreas Hilboll.

	Removed the examples/nested-iter.py considered no longer useful.
Closes gh-343 [https://github.com/PyTables/PyTables/issues/343].

	Better detection of the -msse2 compiler flag.

Changes from 3.0 to 3.1.0

New features

	Now PyTables is able to save/restore the default value of EnumAtom
types (closes gh-234 [https://github.com/PyTables/PyTables/issues/234]).

	Implemented support for the H5FD_SPLIT driver (closes gh-288 [https://github.com/PyTables/PyTables/issues/288],
gh-289 [https://github.com/PyTables/PyTables/issues/289] and gh-295 [https://github.com/PyTables/PyTables/issues/295]). Many thanks to simleo.

	New quantization filter: the filter truncates floating point data to a
specified precision before writing to disk. This can significantly improve
the performance of compressors (closes gh-261 [https://github.com/PyTables/PyTables/issues/261]).
Thanks to Andreas Hilboll.

	Added new VLArray.get_row_size() method to VLArray for
querying the number of atoms of a VLArray row.
Closes gh-24 [https://github.com/PyTables/PyTables/issues/24] and gh-315 [https://github.com/PyTables/PyTables/issues/315].

	The internal Blosc [http://www.blosc.org] library has been updated to version 1.3.2.
All new features introduced in the Blosc [http://www.blosc.org] 1.3.x series, and in particular
the ability to leverage different compressors within Blosc [http://www.blosc.org] (see the Blosc
Release Notes [https://github.com/FrancescAlted/blosc/wiki/Release-notes]), are now available in PyTables via the blosc filter
(closes: gh-324 [https://github.com/PyTables/PyTables/issues/324]). A big thank you to Francesc.

Improvements

	The node caching mechanism has been completely redesigned to be simpler and
less dependent from specific behaviours of the __del__ method.
Now PyTables is compatible with the forthcoming Python 3.4.
Closes gh-306 [https://github.com/PyTables/PyTables/issues/306].

	PyTables no longer uses shared/cached file handlers. This change somewhat
improves support for concurrent reading allowing the user to safely open the
same file in different threads for reading (requires HDF5 >= 1.8.7).
More details about this change can be found in the Backward incompatible
changes section.
See also gh-130 [https://github.com/PyTables/PyTables/issues/130], gh-129 [https://github.com/PyTables/PyTables/issues/129] gh-292 [https://github.com/PyTables/PyTables/issues/292] and gh-216 [https://github.com/PyTables/PyTables/issues/216].

	PyTables is now able to detect and use external installations of the Blosc [http://www.blosc.org]
library (closes gh-104 [https://github.com/PyTables/PyTables/issues/104]). If Blosc [http://www.blosc.org] is not found in the system, and the
user do not specify a custom installation directory, then it is used an internal
copy of the Blosc [http://www.blosc.org] source code.

	Automatically disable extended float support if a buggy version of HDF5
is detected (see also Issues with H5T_NATIVE_LDOUBLE [http://hdf-forum.184993.n3.nabble.com/Issues-with-H5T-NATIVE-LDOUBLE-tt4026450.html]).
See also gh-275 [https://github.com/PyTables/PyTables/issues/275], gh-290 [https://github.com/PyTables/PyTables/issues/290] and gh-300 [https://github.com/PyTables/PyTables/issues/300].

	Documented an unexpected behaviour with string literals in query conditions
on Python 3 (closes gh-265 [https://github.com/PyTables/PyTables/issues/265])

	The deprecated getopt module has been dropped in favour of
argparse in all command line utilities (close gh-251 [https://github.com/PyTables/PyTables/issues/251])

	Improved the installation section of the PyTables User’s Guide.
	instructions for installing PyTables via pip [http://www.pip-installer.org] have been added.

	added a reference to the Anaconda [https://store.continuum.io/cshop/anaconda], Canopy [https://www.enthought.com/products/canopy] and Christoph Gohlke suites [http://www.lfd.uci.edu/~gohlke/pythonlibs]
(closes gh-291 [https://github.com/PyTables/PyTables/issues/291])

	Enabled Travis-CI [https://travis-ci.org] builds for Python [http://www.python.org] 3.3

	Tables.read_coordinates() now also works with boolean indices input.
Closes gh-287 [https://github.com/PyTables/PyTables/issues/287] and gh-298 [https://github.com/PyTables/PyTables/issues/298].

	Improved compatibility with numpy [http://www.numpy.org] >= 1.8 (see gh-259 [https://github.com/PyTables/PyTables/issues/259])

	The code of the benchmark programs (bench directory) has been updated.
Closes gh-114 [https://github.com/PyTables/PyTables/issues/114].

	Fixed some warning related to non-unicode file names (the Windows bytes API
has been deprecated in Python 3.4)

Bugs fixed

	Fixed detection of platforms supporting Blosc [http://www.blosc.org]

	Fixed a crash that occurred when one attempts to write a numpy [http://www.numpy.org] array to
an Atom (closes gh-209 [https://github.com/PyTables/PyTables/issues/209] and gh-296 [https://github.com/PyTables/PyTables/issues/296])

	Prevent creation of a table with no columns (closes gh-18 [https://github.com/PyTables/PyTables/issues/18] and
gh-299 [https://github.com/PyTables/PyTables/issues/299])

	Fixed a memory leak that occured when iterating over
CArray/EArray objects (closes gh-308 [https://github.com/PyTables/PyTables/issues/308],
see also gh-309 [https://github.com/PyTables/PyTables/issues/309]).
Many thanks to Alistair Muldal.

	Make NaN types sort to the end. Closes gh-282 [https://github.com/PyTables/PyTables/issues/282] and gh-313 [https://github.com/PyTables/PyTables/issues/313]

	Fixed selection on float columns when NaNs are present (closes gh-327 [https://github.com/PyTables/PyTables/issues/327]
and gh-330 [https://github.com/PyTables/PyTables/issues/330])

	Fix computation of the buffer size for iterations on rows.
The buffers size was overestimated resulting in a MemoryError
in some cases.
Closes gh-316 [https://github.com/PyTables/PyTables/issues/316]. Thamks to bbudescu.

	Better check of file open mode. Closes gh-318 [https://github.com/PyTables/PyTables/issues/318].

	The Blosc filter now works correctly together with fletcher32.
Closes gh-21 [https://github.com/PyTables/PyTables/issues/21].

	Close the file handle before trying to delete the corresponding file.
Fixes a test failure on Windows.

	Use integer division for computing indices (fixes some warning on Windows)

Deprecations

Following the plan for the complete transition to the new (PEP8 [http://www.python.org/dev/peps/pep-0008] compliant)
API, all calls to the old API will raise a DeprecationWarning.

The new API has been introduced in PyTables 3.0 and is backward incompatible.
In order to guarantee a smoother transition the old API is still usable even
if it is now deprecated.

The plan for the complete transition to the new API is outlined in
gh-224 [https://github.com/PyTables/PyTables/issues/224].

Backward incompatible changes

In PyTables <= 3.0 file handles (objects that are returned by the
open_file() function) were stored in an internal registry and re-used
when possible.

Two subsequent attempts to open the same file (with compatible open mode)
returned the same file handle in PyTables <= 3.0:

In [1]: import tables
In [2]: print(tables.__version__)
3.0.0
In [3]: a = tables.open_file('test.h5', 'a')
In [4]: b = tables.open_file('test.h5', 'a')
In [5]: a is b
Out[5]: True

All this is an implementation detail, it happened under the hood and the user
had no control over the process.

This kind of behaviour was considered a feature since it can speed up opening
of files in case of repeated opens and it also avoids any potential problem
related to multiple opens, a practice that the HDF5 developers recommend to
avoid (see also H5Fopen [http://www.hdfgroup.org/HDF5/doc/RM/RM_H5F.html#File-Open] reference page).

The trick, of course, is that files are not opened multiple times at HDF5
level, rather an open file is referenced several times.

The big drawback of this approach is that there are really few chances to use
PyTables safely in a multi thread program. Several bug reports have been
filed regarding this topic.

After long discussions about the possibility to actually achieve concurrent I/O
and about patterns that should be used for the I/O in concurrent programs
PyTables developers decided to remove the black magic under the hood and
allow the users to implement the patterns they want.

Starting from PyTables 3.1 file handles are no more re-used (shared) and
each call to the open_file() function returns a new file handle:

In [1]: import tables
In [2]: print tables.__version__
3.1.0
In [3]: a = tables.open_file('test.h5', 'a')
In [4]: b = tables.open_file('test.h5', 'a')
In [5]: a is b
Out[5]: False

It is important to stress that the new implementation still has an internal
registry (implementation detail) and it is still not thread safe.
Just now a smart enough developer should be able to use PyTables in a
muti-thread program without too much headaches.

The new implementation behaves differently from the previous one, although the
API has not been changed. Now users should pay more attention when they open a
file multiple times (as recommended in the HDF5 reference [http://www.hdfgroup.org/HDF5/doc/RM/RM_H5F.html#File-Open]) and they
should take care of using them in an appropriate way.

Please note that the File.open_count property was originally intended
to keep track of the number of references to the same file handle.
In PyTables >= 3.1, despite of the name, it maintains the same semantics, just
now its value should never be higher that 1.

Note

HDF5 versions lower than 1.8.7 are not fully compatible with PyTables 3.1.
A partial support to HDF5 < 1.8.7 is still provided but in that case
multiple file opens are not allowed at all (even in read-only mode).

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Release notes for PyTables 3.0 series

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

Release notes for PyTables 3.0 series

	Author:	PyTables Developers

	Contact:	pytables@googlemail.com

Changes from 2.4 to 3.0

New features

	Since this release PyTables provides full support to Python [http://www.python.org] 3
(closes gh-188 [https://github.com/PyTables/PyTables/issues/188]).

	The entire code base is now more compliant with coding style guidelines
describe in the PEP8 [http://www.python.org/dev/peps/pep-0008] (closes gh-103 [https://github.com/PyTables/PyTables/issues/103] and gh-224 [https://github.com/PyTables/PyTables/issues/224]).
See API changes for more details.

	Basic support for HDF5 drivers. Now it is possible to open/create an
HDF5 file using one of the SEC2, DIRECT, LOG, WINDOWS, STDIO or CORE
drivers. Users can also set the main driver parameters (closes
gh-166 [https://github.com/PyTables/PyTables/issues/166]).
Thanks to Michal Slonina.

	Basic support for in-memory image files. An HDF5 file can be set from or
copied into a memory buffer (thanks to Michal Slonina). This feature is
only available if PyTables is built against HDF5 1.8.9 or newer.
Closes gh-165 [https://github.com/PyTables/PyTables/issues/165] and gh-173 [https://github.com/PyTables/PyTables/issues/173].

	New File.get_filesize() method for retrieving the HDF5 file size.

	Implemented methods to get/set the user block size in a HDF5 file
(closes gh-123 [https://github.com/PyTables/PyTables/issues/123])

	Improved support for PyInstaller [http://www.pyinstaller.org]. Now it is easier to pack frozen
applications that use the PyTables package (closes: gh-177 [https://github.com/PyTables/PyTables/issues/177]).
Thanks to Stuart Mentzer and Christoph Gohlke.

	All read methods now have an optional out argument that allows to pass a
pre-allocated array to store data (closes gh-192 [https://github.com/PyTables/PyTables/issues/192])

	Added support for the floating point data types with extended precision
(Float96, Float128, Complex192 and Complex256). This feature is only
available if numpy [http://www.numpy.org] provides it as well.
Closes gh-51 [https://github.com/PyTables/PyTables/issues/51] and gh-214 [https://github.com/PyTables/PyTables/issues/214]. Many thanks to Andrea Bedini.

	Consistent create_xxx() signatures. Now it is possible to create all
data sets Array, CArray, EArray,
VLArray, and Table from existing Python objects (closes
gh-61 [https://github.com/PyTables/PyTables/issues/61] and gh-249 [https://github.com/PyTables/PyTables/issues/249]). See also the API changes section.

	Complete rewrite of the nodes.filenode module. Now it is fully
compliant with the interfaces defined in the standard io module.
Only non-buffered binary I/O is supported currently.
See also the API changes section. Closes gh-244 [https://github.com/PyTables/PyTables/issues/244].

	New pt2to3 tool is provided to help users to port their
applications to the new API (see API changes section).

Improvements

	Improved runtime checks on dynamic loading of libraries: meaningful error
messages are generated in case of failure.
Also, now PyTables no more alters the system PATH.
Closes gh-178 [https://github.com/PyTables/PyTables/issues/178] and gh-179 [https://github.com/PyTables/PyTables/issues/179] (thanks to Christoph Gohlke).

	Improved list of search paths for libraries as suggested by Nicholaus
Halecky (see gh-219 [https://github.com/PyTables/PyTables/issues/219]).

	Removed deprecated Cython [http://www.cython.org] include (.pxi) files. Contents of
convtypetables.pxi have been moved in utilsextension.pyx.
Closes gh-217 [https://github.com/PyTables/PyTables/issues/217].

	The internal Blosc [https://github.com/FrancescAlted/blosc] library has been upgraded to version 1.2.3.

	Pre-load the bzip2 [http://www.bzip.org] library on windows (closes gh-205 [https://github.com/PyTables/PyTables/issues/205])

	The File.get_node() method now accepts unicode paths
(closes gh-203 [https://github.com/PyTables/PyTables/issues/203])

	Improved compatibility with Cython [http://www.cython.org] 0.19 (see gh-220 [https://github.com/PyTables/PyTables/issues/220] and
gh-221 [https://github.com/PyTables/PyTables/issues/221])

	Improved compatibility with numexpr [http://code.google.com/p/numexpr] 2.1 (see also gh-199 [https://github.com/PyTables/PyTables/issues/199] and
gh-241 [https://github.com/PyTables/PyTables/issues/241])

	Improved compatibility with development versions of numpy [http://www.numpy.org]
(see gh-193 [https://github.com/PyTables/PyTables/issues/193])

	Packaging: since this release the standard tar-ball package no more includes
the PDF version of the “PyTables User Guide”, so it is a little bit smaller
now. The complete and pre-build version of the documentation both in HTML
and PDF format is available on the file download area [http://sourceforge.net/projects/pytables/files/pytables] on SourceForge.net.
Closes: gh-172 [https://github.com/PyTables/PyTables/issues/172].

	Now PyTables also uses Travis-CI [https://travis-ci.org] as continuous integration service.
All branches and all pull requests are automatically tested with different
Python [http://www.python.org] versions. Closes gh-212 [https://github.com/PyTables/PyTables/issues/212].

Other changes

	PyTables now requires Python 2.6 or newer.

	Minimum supported version of Numexpr [http://code.google.com/p/numexpr] is now 2.0.

API changes

The entire PyTables API as been made more PEP8 [http://www.python.org/dev/peps/pep-0008] compliant (see gh-224 [https://github.com/PyTables/PyTables/issues/224]).

This means that many methods, attributes, module global variables and also
keyword parameters have been renamed to be compliant with PEP8 [http://www.python.org/dev/peps/pep-0008] style
guidelines (e.g. the tables.hdf5Version constant has been renamed into
tables.hdf5_version).

We made the best effort to maintain compatibility to the old API for existing
applications. In most cases, the old 2.x API is still available and usable
even if it is now deprecated (see the Deprecations section).

The only important backwards incompatible API changes are for names of
function/methods arguments. All uses of keyword arguments should be
checked and fixed to use the new naming convention.

The new pt2to3 tool can be used to port PyTables based applications
to the new API.

Many deprecated features and support for obsolete modules has been dropped:

	The deprecated is_pro module constant has been removed

	The nra module and support for the obsolete numarray module has been removed.
The numarray flavor is no more supported as well (closes gh-107 [https://github.com/PyTables/PyTables/issues/107]).

	Support for the obsolete Numeric module has been removed.
The numeric flavor is no longer available (closes gh-108 [https://github.com/PyTables/PyTables/issues/108]).

	The tables.netcdf3 module has been removed (closes gh-68 [https://github.com/PyTables/PyTables/issues/68]).

	The deprecated exceptions.Incompat16Warning exception has been
removed

	The File.create_external_link() method no longer has a keyword
parameter named warn16incompat. It was deprecated in PyTables 2.4.

Moreover:

	The File.create_array(), File.create_carray(),
File.create_earray(), File.create_vlarray(), and
File.create_table() methods of the File objects gained a
new (optional) keyword argument named obj. It can be used to initialize
the newly created dataset with an existing Python object, though normally
these are numpy [http://www.numpy.org] arrays.

The atom/descriptor and shape parameters are now optional if the
obj argument is provided.

	The nodes.filenode has been completely rewritten to be fully
compliant with the interfaces defined in the io module.

The FileNode classes currently implemented are intended for binary I/O.

Main changes:

	the FileNode base class is no more available,

	the new version of nodes.filenode.ROFileNode and
nodes.filenode.RAFileNode objects no more expose the offset
attribute (the seek and tell methods can be used instead),

	the lineSeparator property is no more available and the \n
character is always used as line separator.

	The __version__ module constants has been removed from almost all the
modules (it was not used after the switch to Git). Of course the package
level constant (tables.__version__) still remains.
Closes gh-112 [https://github.com/PyTables/PyTables/issues/112].

	The lrange() has been dropped in favor of xrange (gh-181 [https://github.com/PyTables/PyTables/issues/181])

	The parameters.MAX_THREADS configuration parameter has been dropped
in favor of parameters.MAX_BLOSC_THREADS and
parameters.MAX_NUMEXPR_THREADS (closes gh-147 [https://github.com/PyTables/PyTables/issues/147]).

	The conditions.compile_condition() function no more has a copycols
argument, it was no more necessary since Numexpr [http://code.google.com/p/numexpr] 1.3.1.
Closes gh-117 [https://github.com/PyTables/PyTables/issues/117].

	The expectedsizeinMB parameter of the File.create_vlarray() and of
the VLArrsy.__init__() methods has been replaced by expectedrows.
See also (gh-35 [https://github.com/PyTables/PyTables/issues/35]).

	The Table.whereAppend() method has been renamed into
Table.append_where() (closes gh-248 [https://github.com/PyTables/PyTables/issues/248]).

Please refer to the Migrating from PyTables 2.x to 3.x document for more details about
API changes and for some useful hint about the migration process from the 2.X
API to the new one.

Other possibly incompatible changes

	All methods of the Table class that take start, stop and
step parameters (including Table.read(), Table.where(),
Table.iterrows(), etc) have been redesigned to have a consistent
behaviour. The meaning of the start, stop and step and their default
values now always work exactly like in the standard slice objects.
Closes gh-44 [https://github.com/PyTables/PyTables/issues/44] and gh-255 [https://github.com/PyTables/PyTables/issues/255].

	Unicode attributes are not stored in the HDF5 file as pickled string.
They are now saved on the HDF5 file as UTF-8 encoded strings.

Although this does not introduce any API breakage, files produced are
different (for unicode attributes) from the ones produced by earlier
versions of PyTables.

	System attributes are now stored in the HDF5 file using the character set
that reflects the native string behaviour: ASCII for Python 2 and UTF8 for
Python 3. In any case, system attributes are represented as Python string.

	The iterrows() method of *Array and Table as well
as the Table.itersorted() now behave like functions in the standard
itertools module.
If the start parameter is provided and stop is None then the
array/table is iterated from start to the last line.
In PyTables < 3.0 only one element was returned.

Deprecations

	As described in API changes, all functions, methods and attribute names
that was not compliant with the PEP8 [http://www.python.org/dev/peps/pep-0008] guidelines have been changed.
Old names are still available but they are deprecated.

	The use of upper-case keyword arguments in the open_file() function
and the File class initializer is now deprecated. All parameters
defined in the tables/parameters.py module can still be passed as
keyword argument to the open_file() function just using a lower-case
version of the parameter name.

Bugs fixed

	Better check access on closed files (closes gh-62 [https://github.com/PyTables/PyTables/issues/62])

	Fix for File.renameNode() where in certain cases
File._g_updateLocation() was wrongly called (closes gh-208 [https://github.com/PyTables/PyTables/issues/208]).
Thanks to Michka Popoff.

	Fixed ptdump failure on data with nested columns (closes gh-213 [https://github.com/PyTables/PyTables/issues/213]).
Thanks to Alexander Ford.

	Fixed an error in open_file() when filename is a numpy.str_
(closes gh-204 [https://github.com/PyTables/PyTables/issues/204])

	Fixed gh-119 [https://github.com/PyTables/PyTables/issues/119], gh-230 [https://github.com/PyTables/PyTables/issues/230] and gh-232 [https://github.com/PyTables/PyTables/issues/232], where an index on
Time64Col (only, Time32Col was ok) hides the data on
selection from a Tables. Thanks to Jeff Reback.

	Fixed tables.tests.test_nestedtypes.ColsTestCase.test_00a_repr test
method. Now the repr of of cols on big-endian platforms is correctly
handled (closes gh-237 [https://github.com/PyTables/PyTables/issues/237]).

	Fixes bug with completely sorted indexes where nrowsinbuf must be equal
to or greater than the chunksize (thanks to Thadeus Burgess).
Closes gh-206 [https://github.com/PyTables/PyTables/issues/206] and gh-238 [https://github.com/PyTables/PyTables/issues/238].

	Fixed an issue of the Table.itersorted() with reverse iteration
(closes gh-252 [https://github.com/PyTables/PyTables/issues/252] and gh-253 [https://github.com/PyTables/PyTables/issues/253]).

Enjoy data!

The PyTables Developers

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Release notes for PyTables 2.4 series

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

Release notes for PyTables 2.4 series

	Author:	PyTables maintainers

	Contact:	pytables@googlemail.com

Changes from 2.3.1 to 2.4

New features

	Improved HDF5 error logging management:
	added a new function, silenceHDF5Messages(), for suppressing
(and re-enabling) HDF5 messages. By default HDF5 error logging is now
suppressed. Closes gh-87 [https://github.com/PyTables/PyTables/issues/87].

	now all HDF5 error messages and trace-backs are trapped and attached to
the exceptions.HDF5ExtError exception instances.
Closes gh-120 [https://github.com/PyTables/PyTables/issues/120].

	Added support for the float16 data type. It is only available if numpy [http://www.numpy.org]
provides it as well (i.e. numpy [http://www.numpy.org] >= 1.6). See gh-51 [https://github.com/PyTables/PyTables/issues/51].

	Leaf nodes now have attributes for retrieving the size of data in memory
and on disk. Data on disk can be compressed, so the new attributes make it
easy to compute the data compression ration.
Thanks to Josh Ayers (close gh-141 [https://github.com/PyTables/PyTables/issues/141]).

	The maximum number of threads for Blosc [https://github.com/FrancescAlted/blosc] and Numexpr [http://code.google.com/p/numexpr] is now handled using
the parameters.MAX_BLOSC_THREADS and
parameters.MAX_NUMEXPR_THREADS parameters respectively.
This allows a more fine grained configuration capability.
Closes gh-142 [https://github.com/PyTables/PyTables/issues/142].

	ndim (read-only) attribute added to Leaf, Atom and
Col objects (closes gh-126 [https://github.com/PyTables/PyTables/issues/126]).

	Added read support for variable length string attributes (non scalar
attributes are converted into numpy [http://www.numpy.org] arrays with ‘O8’ type).
See gh-54 [https://github.com/PyTables/PyTables/issues/54].

Other improvements

	Dropped support for HDF5 1.6.x. Now PyTables uses the HDF5 1.8 API
(closes gh-105 [https://github.com/PyTables/PyTables/issues/105]).

	Blosc [https://github.com/FrancescAlted/blosc] updated to v. 1.1.3.

	The Blosc [https://github.com/FrancescAlted/blosc] compression library is now automatically disabled on platforms
that do not support unaligned memory access (see also
https://github.com/FrancescAlted/blosc/issues/3 and
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=661286).

	Improved bzip2 detection on Windows (gh-116 [https://github.com/PyTables/PyTables/issues/116]). Thanks to cgohlke.

	For Windows, the setup.py script now has the ability to automatically find
the HDF5_DIR in the system PATH. Thanks to Mark (mwiebe).

	Improved multi-arch support in GNU/Linux platforms (closes gh-124 [https://github.com/PyTables/PyTables/issues/124])
Thanks to Julian Taylor and Picca Frederic-Emmanuel.

	Use new style syntax for exception raising. Closes gh-93 [https://github.com/PyTables/PyTables/issues/93].

	Fixed most of the warnings related to py3k compatibility (see gh-92 [https://github.com/PyTables/PyTables/issues/92]).

	Fixed pyflakes [https://launchpad.net/pyflakes] warnings (closes gh-102 [https://github.com/PyTables/PyTables/issues/102]).

	Cython [http://www.cython.org] extensions updated to use new constructs (closes gh-100 [https://github.com/PyTables/PyTables/issues/100]).

	Reduced the number of build warnings (closes gh-101 [https://github.com/PyTables/PyTables/issues/101]).

	Removed the old lrucache module. It is no more needed after the merge with
PyTables Pro (closes gh-118 [https://github.com/PyTables/PyTables/issues/118]).

	Added explicit (import time) testing for hdf5dll.dll on Windows to improve
diagnostics (closes gh-146 [https://github.com/PyTables/PyTables/issues/146]). Thanks to Mark (mwiebe).

Documentation improvements

	new coockbook section (contents have been coming from the PyTables wiki
on http://www.pytables.org)

	complete rework of the library reference. Now the entire chapter is
generated from docstrings using the sphinx autodoc extension.
A big thank you to Josh Ayers. Closes gh-148 [https://github.com/PyTables/PyTables/issues/148].

	new sphinx theme based on the cloud template

Bugs fixed

	Fixed a segfault on platforms that do not support unaligned memory access
(closes: gh-134 [https://github.com/PyTables/PyTables/issues/134]). Thanks to Julian Taylor.

	Fixed broken inheritance in IsDescription classes (thanks to
Andrea Bedini). Closes gh-65 [https://github.com/PyTables/PyTables/issues/65].

	Fixed table descriptions copy method (closes gh-131 [https://github.com/PyTables/PyTables/issues/131]).

	Fixed open failures handling (closes gh-158 [https://github.com/PyTables/PyTables/issues/158]).
Errors that happen when one tries to open an invalid HDF5 file (e.g. an
empty file) are now detected earlier by PyTables and a proper exception
(exceptions.HDF5ExtError) is raised.
Also, in case of open failures, invalid file descriptors are no more cached.
Before is fix it was not possible to completely close the bad file and reopen
the same path, even if a valid file was created in the meanwhile.
Thanks to Daniele for reporting and for the useful test code.

	Fixed support to rich structured numpy.dtype in
description.descr_from_dtype(). Closes gh-160 [https://github.com/PyTables/PyTables/issues/160].

	Fixed sorting of nested tables that caused AttributeError.
Closes gh-156 [https://github.com/PyTables/PyTables/issues/156] and gh-157 [https://github.com/PyTables/PyTables/issues/157]. Thanks to Uwe Mayer.

	Fixed flavor deregistration (closes gh-163 [https://github.com/PyTables/PyTables/issues/163])

Deprecations

	The parameters.MAX_THREADS configuration parameter is now
deprecated. Please use parameters.MAX_BLOSC_THREADS and
parameters.MAX_NUMEXPR_THREADS instead.
See gh-142 [https://github.com/PyTables/PyTables/issues/142].

	Since the support for HDF5 1.6.x has been dropped, the warn16incompat
argument of the File.createExternalLink() method and the
exceptions.Incompat16Warning exception class are now deprecated.

Enjoy data!

The PyTables Team

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Release notes for PyTables 2.3 series

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

Release notes for PyTables 2.3 series

	Author:	PyTables maintainers

	Contact:	pytables@googlemail.com

Changes from 2.3 to 2.3.1

	Fixed a bug that prevented to read scalar datasets of UnImplemented types
(closes gh-111 [https://github.com/PyTables/PyTables/issues/111]). Thanks to Kamil Kisiel.

	Fixed a bug in setup.py that caused installation of PyTables 2.3 to fail
on hosts with multiple python versions installed (closes gh-113 [https://github.com/PyTables/PyTables/issues/113]).
Thanks to sbinet.

Changes from 2.2.1 to 2.3

Features coming from (now liberated) PyTables Pro

	OPSI is a powerful and innovative indexing engine allowing PyTables to
perform fast queries on arbitrarily large tables. Moreover, it offers a wide
range of optimization levels for its indexes so that the user can choose the
best one that suits her needs (more or less size, more or less performance).
Indexation code also takes advantage of the vectorization capabilities of the
NumPy and Numexpr packages to ensure really short indexing and search times.

	A fine-tuned LRU cache for both metadata (nodes) and regular data that lets
you achieve maximum speed for intensive object tree browsing during data
reads and queries. It complements the already efficient cache present in
HDF5, although this is more geared towards high-level structures that are
specific to PyTables and that are critical for achieving very high
performance.

Other changes

	Indexes with no elements are now evaluated as non-CSI ones. Closes
#312.

	Numexpr presence is tested now in setup.py, provided that user is not
using setuptools (i.e. easy_install or pip tools). When using
setuptools, numexpr continues to be a requisite (and Cython too).
Closes #298.

	Cython is enforced now during compilation time. Also, it is not
required when running tests.

	Repeatedly closing a file that has been reopened several times is
supported now. Closes #318.

	The number of times a file has been currently reopened is available
now in the new File.open_count read-only attribute.

	The entire documentation set has been converted to sphinx (close
gh-85 [https://github.com/PyTables/PyTables/issues/85] and gh-86 [https://github.com/PyTables/PyTables/issues/86]) that now also has an index
(closes :issue`39`).

	The entire test suite has been updated to use unittest specific
assertions (closes gh-66 [https://github.com/PyTables/PyTables/issues/66]).

	PyTables has been tested against the latest version of numpy (v. 1.6.1
and 2.0dev) and Cython (v, 0.15) packages. Closes gh-84 [https://github.com/PyTables/PyTables/issues/84].

	The setup.py script has been improved to better detect runtimes
(closes gh-73 [https://github.com/PyTables/PyTables/issues/73]).

Deprecations

Support for some old packages and related features has been deprecated
and will be removed in future versions:

	Numeric (closes gh-76 [https://github.com/PyTables/PyTables/issues/76])

	numarray (closes :issue`76` and gh-75 [https://github.com/PyTables/PyTables/issues/75])

	HDF5 1.6.x (closes :issue`96`)

At the API level the following are now deprecated:

	the tables.is_pro constant is deprecated because PyTables Pro
has been released under an open source license.

	the netcdf3 sub-package (closes gh-67 [https://github.com/PyTables/PyTables/issues/67])

	the nra sub-package

Enjoy data!

– The PyTables Team

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Release notes for PyTables 2.2 series

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

Release notes for PyTables 2.2 series

	Author:	Francesc Alted i Abad

	Contact:	faltet@pytables.org

Changes from 2.2.1rc1 to 2.2.1

	The Row accessor implements a new __contains__ special method that
allows doing things like:

for row in table:
 if item in row:
 print "Value found in row", row.nrow
 break

Closes #309.

	PyTables is more friendly with easy_install and pip now, as all the
Python dependencies should be installed automatically. Closes #298.

Changes from 2.2 to 2.2.1rc1

	When using ObjectAtom objects in VLArrays the HIGHEST_PROTOCOL
is used for pickling objects. For NumPy arrays, this simple change
leads to space savings up to 3x and time improvements up to 30x.
Closes #301.

	tables.Expr can perform operations on scalars now. Thanks to Gaëtan
de Menten for providing a patch for this. Closes #287.

	Fixed a problem with indexes larger than 32-bit on leaf objects on
32-bit machines. Fixes #283.

	Merged in Blosc 1.1.2 for fixing a problem with large datatypes and
subprocess issues. Closes #288 and #295.

	Due to the adoption of Blosc 1.1.2, the pthreads-win32 library
dependency is dropped on Windows platforms.

	Fixed a problem with tables.Expr and operands with vary large
rowsizes. Closes #300.

	leaf[numpy.array[scalar]] idiom returns a NumPy array instead of
an scalar. This has been done for compatibility with NumPy. Closes
#303.

	Optimization for Table.copy() so that FIELD_* attrs are not
overwritten during the copy. This can lead to speed-ups up to 100x
for short tables that have hundreds of columns. Closes #304.

	For external links, its relative paths are resolved now with respect
to the directory of the main HDF5 file, rather than with respect to
the current directory. Closes #306.

	Expr.setInputsRange() and Expr.setOutputRange() do support
numpy.integer types now. Closes #285.

	Column names in tables can start with ‘__’ now. Closes #291.

	Unicode empty strings are supported now as atributes. Addresses #307.

	Cython 0.13 and higher is supported now. Fixes #293.

	PyTables should be more ‘easy_install’-able now. Addresses #298.

Changes from 2.2rc2 to 2.2 (final)

	Updated Blosc to 1.0 (final).

	Filter ID of Blosc changed from wrong 32010 to reserved 32001. This
will prevent PyTables 2.2 (final) to read files created with Blosc and
PyTables 2.2 pre-final. ptrepack can be used to retrieve those
files, if necessary. More info in ticket #281.

	Recent benchmarks suggest a new parametrization is better in most
scenarios:

	The default chunksize has been doubled for every dataset size. This
works better in most of scenarios, specially with the new Blosc
compressor.

	The HDF5 CHUNK_CACHE_SIZE parameter has been raised to 2 MB in order
to better adapt to the chunksize increase. This provides better hit
ratio (at the cost of consuming more memory).

Some plots have been added to the User’s Manual (chapter 5) showing
how the new parametrization works.

Changes from 2.2rc1 to 2.2rc2

	A new version of Blosc (0.9.5) is included. This version is now
considered to be stable and apt for production. Thanks for all
PyTables users that have contributed to find and report bugs.

	Added a new IO_BUFFER_SIZE parameter to tables/parameters.py
that allows to set the internal PyTables’ buffer for doing I/O. This
replaces CHUNKTIMES but it is more general because it affects to all
Leaf objects and also the tables.Expr module (and not only tables
as before).

	BUFFERTIMES parameter in tables/parameters.py has been
renamed to BUFFER_TIMES which is more consistent with other
parameter names.

	On Windows platforms, the path to the tables module is now appended to
sys.path and the PATH environment variable. That way DLLs and PYDs in
the tables directory are to be found now. Thanks to Christoph Gohlke
for the hint.

	A replacement for barriers for Mac OSX, or other systems not
implementing them, has been carried out. This allows to compile
PyTables on such platforms. Fixes #278

	Fixed a couple of warts that raise compatibility warnings with
forthcoming Python 2.7.

	HDF5 1.8.5 is used in Windows binaries.

Changes from 2.2b3 to 2.2rc1

	Numexpr is not included anymore in PyTables and has become a requisite
instead. This is because Numexpr already has decent enough installers
and is available in the PyPI repository also, so it should be easy for
users to fulfill this dependency.

	When using a Numexpr package that is turbo-loaded with Intel’s
VML/MKL, the parameter MAX_THREADS will control the number of
threads that VML can use during computations. For a finer control,
the numexpr.set_vml_num_threads() can always be used.

	Cython is used now instead of Pyrex for Pyrex extensions.

	Updated to 0.9 version of Blosc compressor. This version can make use
of threads so as to accelerate the compression/decompression process.
In order to change the maximum number of threads that Blosc can use (2
by default), you can modify the MAX_THREADS variable in
tables/parameters.py or make use of the new setBloscMaxThreads()
global function.

	Reopening already opened files is supported now, provided that there is
not incompatibility among intended usages (for example, you cannot
reopen in append mode an already opened file in read-only mode).

	Option --print-versions for test_all.py script is now
preferred over the deprecated --show-versions. This is more
consistent with the existing print_versions() function.

	Fixed a bug that, under some circumstances, prevented the use of table
iterators in itertool.groupby(). Now, you can safely do things
like:

sel_rows = table.where('(row_id >= 3)')
for group_id, grouped_rows in itertools.groupby(sel_rows, f_group):
 group_mean = average([row['row_id'] for row in grouped_rows])

Fixes #264.

	Copies of Array objects with multidimensional atoms (coming from
native HDF5 files) work correctly now (i.e. the copy holds the atom
dimensionality). Fixes #275.

	The tables.openFile() function does not try anymore to open/close
the file in order to guess whether it is a HDF5 or PyTables one before
opening it definitely. This allows the fcntl.flock() and
fcntl.lockf() Python functions to work correctly now (that’s useful
for arbitrating access to the file by different processes). Thanks to
Dag Sverre Seljebotn and Ivan Vilata for their suggestions on hunting
this one! Fixes #185.

	The estimation of the chunksize when using multidimensional atoms in
EArray/Carray was wrong because it did not take in account the shape
of the atom. Thanks to Ralf Juengling for reporting. Fixes #273.

	Non-contiguous arrays can now safely be saved as attributes. Before,
if arrays were not contiguous, incorrect data was saved in attr.
Fixes #270.

	EXTDIM attribute for CArray/EArray now saves the correct extendeable
dimension, instead of rubbish. This does not affected functionality,
because extendeable dimension was retrieved directly from shape
information, but it was providing misleading information to the user.
Fixes #268.

API changes

	Now, Table.Cols.__len__() returns the number of top level columns
instead of the number of rows in table. This is more consistent in
that Table.Cols is an accessor for columns. Fixes #276.

Changes from 2.2b2 to 2.2b3

	Blosc compressor has been added as an additional filter, in addition
to the existing Zlib, LZO and bzip2. This new compressor is meant for
fast compression and extremely fast decompression. Fixes #265.

	In File.copyFile() method, copyuserattrs was set to false as
default. This was unconsistent with other methods where the default
value for copyuserattrs is true. The default for this is true now.
Closes #261.

	tables.copyFile and File.copyFile recognize now the parameters
present in tables/parameters.py. Fixes #262.

	Backported fix for issue #25 in Numexpr (OP_NEG_LL treats the argument
as an int, not a long long). Thanks to David Cooke for this.

	CHUNK_CACHE_NELMTS in tables/paramters.py set to a prime number as
Neil Fortner suggested.

	Workaround for a problem in Python 2.6.4 (and probably other versions
too) for pickling strings like “0” or “0.”. Fixes #253.

Changes from 2.2b1 to 2.2b2

Enhancements

	Support for HDF5 hard links, soft links and external links (when
PyTables is compiled against HDF5 1.8.x series). A new tutorial about
its usage has been added to the ‘Tutorials’ chapter of User’s Manual.
Closes #239 and #247.

	Added support for setting HDF5 chunk cache parameters in file
opening/creating time. ‘CHUNK_CACHE_NELMTS’, ‘CHUNK_CACHE_PREEMPT’
and ‘CHUNK_CACHE_SIZE’ are the new parameters. See “PyTables’
parameter files” appendix in User’s Manual for more info. Closes
#221.

	New Unknown class added so that objects that HDF5 identifies as
H5G_UNKNOWN can be mapped to it and continue operations
gracefully.

	Added flag –dont-create-sysattrs to ptrepack so as to not
create sys attrs (default is to do it).

	Support for native compound types in attributes. This allows for
better compatibility with HDF5 files. Closes #208.

	Support for native NumPy dtype in the description parameter of
File.createTable(). Closes #238.

Bugs fixed

	Added missing _c_classId attribute to the UnImplemented class.
ptrepack no longer chokes while copying Unimplemented classes.

	The FIELD_* sys attrs are no longer copied when the
PYTABLES_SYS_ATTRS parameter is set to false.

	File.createTable() no longer segfaults if description=None. Closes
#248.

	Workaround for avoiding a Python issue causing a segfault when saving
and then retrieving a string attribute with values “0” or “0.”.
Closes #253.

API changes

	Row.__contains__() disabled because it has little sense to query for
a key in Row, and the correct way should be to query for it in
Table.colnames or Table.colpathnames better. Closes #241.

	[Semantic change] To avoid a common pitfall when asking for the string
representation of a Row class, Row.__str__() has been redefined.
Now, it prints something like:

>>> for row in table:
... print row
...
/newgroup/table.row (Row), pointing to row #0
/newgroup/table.row (Row), pointing to row #1
/newgroup/table.row (Row), pointing to row #2

instead of:

>>> for row in table:
... print row
...
('Particle: 0', 0, 10, 0.0, 0.0)
('Particle: 1', 1, 9, 1.0, 1.0)
('Particle: 2', 2, 8, 4.0, 4.0)

Use print row[:] idiom if you want to reproduce the old behaviour.
Closes #252.

Other changes

	After some improvements in both HDF5 and PyTables, the limit before
emitting a PerformanceWarning on the number of children in a group
has been raised from 4096 to 16384.

Changes from 2.1.1 to 2.2b1

Enhancements

	Added Expr, a class for evaluating expressions containing
array-like objects. It can evaluate expressions (like ‘3*a+4*b’)
that operate on arbitrary large arrays while optimizing the
resources (basically main memory and CPU cache memory) required to
perform them. It is similar to the Numexpr package, but in addition
to NumPy objects, it also accepts disk-based homogeneous arrays,
like the Array, CArray, EArray and Column PyTables objects.

	Added support for NumPy’s extended slicing in all Leaf objects.
With that, you can do the next sort of selections:

array1 = array[4] # simple selection
array2 = array[4:1000:2] # slice selection
array3 = array[1, ..., ::2, 1:4, 4:] # general slice selection
array4 = array[1, [1,5,10], ..., -1] # fancy selection
array5 = array[np.where(array[:] > 4)] # point selection
array6 = array[array[:] > 4] # boolean selection

Thanks to Andrew Collette for implementing this for h5py, from which
it has been backported. Closes #198 and #209.

	Numexpr updated to 1.3.1. This can lead to up a 25% improvement of
the time for both in-kernel and indexed queries for unaligned
tables.

	HDF5 1.8.3 supported.

Bugs fixed

	Fixed problems when modifying multidimensional columns in Table
objects. Closes #228.

	Row attribute is no longer stalled after a table move or rename.
Fixes #224.

	Array.__getitem__(scalar) returns a NumPy scalar now, instead of a
0-dim NumPy array. This should not be noticed by normal users,
unless they check for the type of returned value. Fixes #222.

API changes

	Added a dtype attribute for all leaves. This is the NumPy
dtype that most closely matches the leaf type. This allows for
a quick-and-dirty check of leaf types. Closes #230.

	Added a shape attribute for Column objects. This is formed by
concatenating the length of the column and the shape of its type.
Also, the representation of columns has changed an now includes the
length of the column as the leading dimension. Closes #231.

	Added a new maindim attribute for Column which has the 0 value
(the leading dimension). This allows for a better similarity with
other *Array objects.

	In order to be consistent and allow the extended slicing to happen
in VLArray objects too, VLArray.__setitem__() is not able to
partially modify rows based on the second dimension passed as key.
If this is tried, an IndexError is raised now. Closes #210.

	The forceCSI flag has been replaced by checkCSI in the next
Table methods: copy(), readSorted() and itersorted(). The
change reflects the fact that a re-index operation cannot be
triggered from these methods anymore. The rational for the change
is that an indexing operation is a potentially very expensive
operation that should be carried out explicitly instead of being
triggered by methods that should not be in charge of this task.
Closes #216.

Backward incompatible changes

	After the introduction of the shape attribute for Column
objects, the shape information for multidimensional columns has been
removed from the dtype attribute (it is set to the base type of
the column now). Closes #232.

Enjoy data!

– The PyTables Team

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Release notes for PyTables 2.1 series

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

Release notes for PyTables 2.1 series

	Author:	Francesc Alted i Abad

	Contact:	faltet@pytables.org

Changes from 2.1.1 to 2.1.2

Bug fixes

	Solved problems with Table.modifyColumn() when the column(s) is
multidimensional. Fixes #228.

	The row attribute of a table seems stalled after a table move or
rename. Fixes #224.

	Fixed a problem with len(array) in 32-bit platforms when array
is large enough (> 2**31).

	Added missing _c_classId attribute to the UnImplemented class.
ptrepack no longer chokes while copying Unimplemented classes.

	The FIELD_* sys attrs are no longer copied when the
PYTABLES_SYS_ATTRS parameter is set to false.

	The FILTERS attribute is not added anymore when
PYTABLES_SYS_ATTR parameter is set to false.

	Disable the printing of Unicode characters that cannot be printed on
win32 platform. Fixes #235.

Other changes

	When retrieving a row of a 1-dimensional array, a 0-dim array was
returned instead of a numpy scalar. Now, an actuall numpy scalar is
returned. Closes #222.

	LZO and bzip2 filters adapted to an API fix introduced in HDF5
1.8.3. Closes #225.

	Unsupported HDF5 types in attributes are no longer transferred
during copies. A new _v_unimplemented list have been added in
AttributeSet class so as to keep track of such attributes. Closes
#240.

	LZO binaries have disappeared from the GnuWin32 repository. Until
they come eventually back, they have been put at
http://www.pytables.org/download/lzo-win. This has been documented
in the install chapter.

Changes from 2.1 to 2.1.1

Bug fixes

	Fixed a memory leak when a lot of queries were made. Closes #203
and #207.

	The chunkshape=”auto” parameter value of Leaf.copy() is honored
now, even when the (start, stop, step) parameters are specified.
Closes #204.

	Due to a flaw in its design, the File class was not able to be
subclassed. This has been fixed. Closes #205.

	Default values were not correctly retrieved when opening already
created CArray/EArray objects. Fixed. Closes #212.

	Fixed a problem with the installation of the nctoh5 script that
prevented it from being executed. Closes #215.

	[Pro] The iterseq cache ignored non-indexed conditions, giving
wrong results when those appeared in condition expressions. This
has been fixed. Closes #206.

Other changes

	openFile(), isHDF5File() and isPyTablesFile() functions accept
Unicode filenames now. Closes #202 and #214.

	When creating large type sizes (exceeding 64 KB), HDF5 complained
and refused to do so. The HDF5 team has logged the issue as a bug,
but meanwhile it has been implemented a workaround in PyTables that
allows to create such large datatypes for situations that does not
require defaults other than zero. Addresses #211.

	In order to be consistent with how are stored the other data types,
Unicode attributes are retrieved now as NumPy scalars instead of
Python Unicode strings or NumPy arrays. For the moment, I’ve fixed
this through pickling the Unicode strings. In the future, when HDF5
1.8.x series would be a requirement, that should be done via a HDF5
native Unicode type. Closes #213.

Enjoy data!

The PyTables Team

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Release notes for PyTables 2.0 series

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

Release notes for PyTables 2.0 series

	Author:	Francesc Alted i Abad

	Contact:	faltet@pytables.com

	Author:	Ivan Vilata i Balaguer

	Contact:	ivan@selidor.net

Changes from 2.0.3 to 2.0.4

	Selections in tables works now in threaded environments. The problem was in
the Numexpr package – the solution has been reported to the upstream
authors too. Fixes #164.

	PyTables had problems importing native HDF5 files with gaps in nested
compound types. This has been solved. Fixes #173.

	In order to prevent a bug existing in HDF5 1.6 series, the
EArray.truncate() method refused to accept a 0 as parameter
(i.e. truncate an existing EArray to have zero rows did not work). As this
has been fixed in the recent HDF5 1.8 series, this limitation has been
removed (but only if the user has one of these installed). Fixes #171.

	Small fixes for allowing the test suite to pass when using the new NumPy
1.1. However, it remains a small issue with the way the new NumPy
represents complex numbers. I’m not fixing that in the PyTables suite, as
there are chances that this can be fixed in NumPy itself (see ticket #841).

Changes from 2.0.2 to 2.0.3

	Replaced the algorithm for computing chunksizes by another that is
more general and useful for a larger range of expected dataset sizes.
The outcome of the new calculation is the same than before for
dataset sizes <= 100 GB. For datasets between 100 GB <= size < 10
TB, larger values are returned. For sizes >= 10 TB a maximum value
of 1 MB is always returned.

	Fixed a problem when updating multidimensional cells using the
Row.update() method in the middle of table iterators . Fixes #149.

	Added support for the latest 1.8.0 version of the HDF5 library.
Fixes ticket #127.

	PyTables compiles now against latest versions of Pyrex (0.9.6.4). For the
first time, the extensions do compile without warnings! Fixes #159.

	Numexpr module has been put in sync with the version in SciPy sandbox.

	Added a couple of warnings in User’s Guide so as to tell the user that it is
not safe to use methods that can change the number of rows of a table in the
middle of a row iterator. Fixes #153.

Changes from 2.0.1 to 2.0.2

	Added __enter__() and __exit__() methods to File; fixes #113.
With this, and if using Python 2.5 you can do things like:

	with tables.openFile(“test.h5”) as h5file:

	...

	Carefully preserve type when converting NumPy scalar to numarray; fixes
#125.

	Fixed a nasty bug that appeared when moving or renaming groups due to a bad
interaction between Group._g_updateChildrenLocation() and the LRU cache.
Solves #126.

	Return 0 when no rows are given to Table.modifyRows(); fixes #128.

	Added an informative message when the nctoh5 utility is run without the
NetCDF interface of ScientificPython bening installed.

	Now, a default representation of closed nodes is provided; fixes #129.

Changes from 2.0 to 2.0.1

	The coords argument of Table.readCoords() was not checked
for contiguousness, raising fatal errors when it was discontiguous.
This has been fixed.

	There is an inconsistency in the way used to specify the atom shape
in Atom constructors. When the shape is specified as
shape=() it means a scalar atom and when it is specified as
shape=N it means an atom with shape=(N,). But when the
shape is specified as shape=1 (i.e. in the default case) then a
scalar atom is obtained instead of an atom with shape=(1,).
This is inconsistent and not the behavior that NumPy exhibits.

Changing this will require a migration path which includes
deprecating the old behaviour if we want to make the change happen
before a new major version. The proposed path is:

	In PyTables 2.0.1, we are changing the default value of the
shape argument to (), and issue a DeprecationWarning
when someone uses shape=1 stating that, for the time being,
it is equivalent to (), but in near future versions it will
become equivalent to (1,), and recommending the user to pass
shape=() if a scalar is desired.

	In PyTables 2.1, we will remove the previous warning and take
shape=N to mean shape=(N,) for any value of N.

See ticket #96 for more info.

	The info about the chunkshape attribute of a leaf is now printed
in the __repr__() of chunked leaves (all except Array).

	After some scrupulous benchmarking job, the size of the I/O buffer
for Table objects has been reduced to the minimum that allows
maximum performance. This represents more than 10x of reduction in
size for that buffer, which will benefit those programs dealing with
many tables simultaneously (#109).

	In the ptrepack utility, when --complevel and --shuffle
were specified at the same time, the ‘shuffle’ filter was always set
to ‘off’. This has been fixed (#104).

	An ugly bug related with the integrated Numexpr not being aware of
all the variations of data arrangements in recarray objects has been
fixed (#103). We should stress that the bug only affected the
Numexpr version integrated in PyTables, and not the original one.

	When passing a record array to a table at creation time, its real
length is now used instead of the default value for
expectedrows. This allows for better performance (#97).

	Added some workarounds so that NumPy scalars can be successfully
converted to numarray objects. Fixes #98.

	PyTables is now able to access table rows beyond 2**31 in 32-bit
Python. The problem was a limitation of xrange and we have
replaced it by a new lrange class written in Pyrex. Moreover,
lrange has been made publicly accessible as a safe 64-bit
replacement for xrange for 32-bit platforms users. Fixes #99.

	If a group and a table are created in a function, and the table is
accessed through the group, the table can be flushed now. Fixes
#94.

	It is now possible to directly assign a field in a nested record of
a table using the natural naming notation (#93).

Changes from 2.0rc2 to 2.0

	Added support for recognizing native HDF5 files with datasets compressed
with szip compressor.

	Fixed a problem when asking for the string representation (str()) of closed
files. Fixes ticket #79.

	Do not take LZO as available when its initialisation fails.

	Fixed a glitch in ptrepack utility. When the user wants a copy of a group,
and a group is to be created in destination, the attributes of the
original group are copied. If it is not to be created, the attributes
will not be copied. I think this should be what the user would expect most
of the times.

	Fixed the check for creating intermediate groups in ptrepack utility.
Solves ticket #83.

	Before, when reading a dataset with an unknown CLASS id, a warning was
issued and the dataset mapped to UnImplemented. This closed the door to
have the opportunity to try to recognize the dataset and map it to a
supported CLASS. Now, when a CLASS attribute is not recognized, an attempt
to recognize its associated dataset is made. If it is recognized, the
matching class is associated with the dataset. If it is not recognized, then
a warning is issued and the dataset becomes mapped to UnImplemented.

	Always pass verbose and heavy values in the common test module to test().
Fixes ticket #85.

	Now, the verbose and --heavy flag passed to test_all.py are honored.

	All the DLL’s of dependencies are included now in Windows binaries. This
should allow for better portability of the binaries.

	Fixed the description of Node._v_objectID that was misleading.

Changes from 2.0rc1 to 2.0rc2

	The “Optimization tips” chapter of the User’s Guide has been completely
updated to adapt to PyTables 2.0 series. In particular, new benchmarks on
the much improved indexed queries have been included; you will see that
PyTables indexing is competitive (and sometimes much faster) than that of
traditional relational databases. With this, the manual should be fairly
finished for 2.0 final release.

	Large refactoring done on the Row class. The most important change is
that Table.row is now a single object. This allows to reuse the same
Row instance even after Table.flush() calls, which can be convenient
in many situations.

	I/O buffers unified in the Row class. That allows for bigger savings in
memory space whenever the Row extension is used.

	Improved speed (up to a 70%) with unaligned column operations (a quite
common scenario when dealing with Table objects) through the integrated
Numexpr. In-kernel searches take advantage of this optimization.

	Added VLUnicodeAtom for storing variable-length Unicode strings in
VLArray objects regardless of encoding. Closes ticket #51.

	Added support for time datatypes to be portable between big-endian and
low-endian architectures. This feature is not currently supported natively
by the HDF5 library, so the support for such conversion has been added in
PyTables itself. Fixes #72.

	Added slice arguments to Table.readWhere() and Table.getWhereList().
Although API changes are frozen, this may still be seen as an inconsistency
with other query methods. The patch is backwards-compatible anyway.

	Added missing overwrite argument to File.renameNode() and
Node._f_rename(). Fixes ticket #66.

	Calling tables.test() no longer exits the interpreter session. Fixes
ticket #67.

	Fix comparing strings where one is a prefix of the other in integrated
Numexpr. Fixes ticket #76.

	Added a check for avoiding an ugly HDF5 message when copying a file over
itself (for both copyFile() and File.copyFile()). Fixes ticket #73.

	Corrected the appendix E, were it was said that PyTables doesn’t support
compounds of compounds (it does since version 1.2!).

Changes from 2.0b2 to 2.0rc1

	The API Reference section of the User’s Manual (and the matching docstrings)
has been completely reviewed, expanded and corrected. This process has
unveiled some errors and inconsistencies which have also been fixed.

	Fixed VLArray.__getitem__() to behave as expected in Python when using
slices, instead of following the semantics of PyTables’ read() methods
(e.g. reading just one element when no stop is provided). Fixes ticket #50.

	Removed implicit UTF-8 encoding from VLArray data using vlstring
atoms. Now a variable-length string is stored as is, which lets users use
any encoding of their choice, or none of them. A vlunicode atom will
probably be added to the next release so as to fix ticket #51.

	Allow non-sequence objects to be passed to VLArray.append() when using
an object atom. This was already possible in 1.x but stopped working
when the old append syntax was dropped in 2.0. Fixes ticket #63.

	Changed Cols.__len__() to return the number of rows of the table or
nested column (instead of the number of fields), like its counterparts in
Table and Column.

	Python scalars cached in AttributeSet instances are now kept as NumPy
objects instead of Python ones, because they do become NumPy objects when
retrieved from disk. Fixes ticket #59.

	Avoid HDF5 error when appending an empty array to a Table (ticket #57)
or EArray (ticket #49) dataset.

	Fix wrong implementation of the top-level table.description._v_dflts
map, which was also including the pathnames of columns inside nested
columns. Fixes ticket #45.

	Optimized the access to unaligned arrays in Numexpr between a 30% and a 70%.

	Fixed a die-hard bug that caused the loading of groups while closing a file.
This only showed with certain usage patterns of the LRU cache (e.g. the one
caused by ManyNodesTestCase in test_indexes.py under Pro).

	Avoid copious warnings about unused functions and variables when compiling
Numexpr.

	Several fixes to Numexpr expressions with all constant values. Fixed
tickets #53, #54, #55, #58. Reported bugs to mainstream developers.

	Solved an issue when trying to open one of the included test files in append
mode on a system-wide installation by a normal user with no write privileges
on it. The file isn’t being modified anyway, so the test is skipped then.

	Added a new benchmark to compare the I/O speed of Array and EArray
objects with that of cPickle.

	The old Row.__call__() is no longer available as a public method. It
was not documented, anyway. Fixes ticket #46.

	Cols._f_close() is no longer public. Fixes ticket #47.

	Attributes._f_close() is no longer public. Fixes ticket #52.

	The undocumented Description.classdict attribute has been completely
removed. Fixes ticket #44.

Changes from 2.0b1 to 2.0b2

	A very exhaustive overhauling of the User’s Manual is in process. The
chapters 1 (Introduction), 2 (Installation), 3 (Tutorials) have been
completed (and hopefully, the lines of code are easier to copy&paste now),
while chapter 4 (API Reference) has been done up to (and including) the
Table class. During this tedious (but critical in a library) overhauling
work, we have tried hard to synchronize the text in the User’s Guide with
that which appears on the docstrings.

	Removed the recursive argument in Group._f_walkNodes(). Using it
with a false value was redundant with Group._f_iterNodes(). Fixes
ticket #42.

	Removed the coords argument from Table.read(). It was undocumented
and redundant with Table.readCoordinates(). Fixes ticket #41.

	Fixed the signature of Group.__iter__() (by removing its parameters).

	Added new Table.coldescrs and Table.description._v_itemsize
attributes.

	Added a couple of new attributes for leaves:
	nrowsinbuf: the number of rows that fit in the internal buffers.

	chunkshape: the chunk size for chunked datasets.

	Fixed setuptools so that making an egg out of the PyTables 2 package is
possible now.

	Added a new tables.restrict_flavors() function allowing to restrict
available flavors to a given set. This can be useful e.g. if you want to
force PyTables to get NumPy data out of an old, numarray-flavored
PyTables file even if the numarray package is installed.

	Fixed a bug which caused filters of unavailable compression libraries to be
loaded as using the default Zlib library, after issuing a warning. Added a
new FiltersWarning and a Filters.copy().

Important changes from 1.4.x to 2.0

API additions

	Column.createIndex() has received a couple of new parameters:
optlevel and filters. The first one sets the desired quality level
of the index, while the second one allows the user to specify the filters
for the index.

	Table.indexprops has been split into Table.indexFilters and
Table.autoIndex. The later groups the functionality of the old auto
and reindex.

	The new Table.colpathnames is a sequence which contains the full
pathnames of all bottom-level columns in a table. This can be used to walk
all Column objects in a table when used with Table.colinstances.

	The new Table.colinstances dictionary maps column pathnames to their
associated Column or Cols object for simple or nested columns,
respectively. This is similar to Table.cols._f_col(), but faster.

	Row has received a new Row.fetch_all_fields() method in order to
return all the fields in the current row. This returns a NumPy void scalar
for each call.

	New tables.test(verbose=False, heavy=False) high level function for
interactively running the complete test suite from the Python console.

	Added a tables.print_versions() for easily getting the versions for all
the software on which PyTables relies on.

Backward-incompatible changes

	You can no longer mark a column for indexing in a Col declaration. The
only way of creating an index for a column is to invoke the
createIndex() method of the proper column object after the table has
been created.

	Now the Table.colnames attribute is just a list of the names of
top-level columns in a table. You can still get something similar to the
old structure by using Table.description._v_nestedNames. See also the
new Table.colpathnames attribute.

	The File.objects, File.leaves and File.groups dictionaries have
been removed. If you still need this functionality, please use the
File.getNode() and File.walkNodes() instead.

	Table.removeIndex() is no longer available; to remove an index on a
column, one must use the removeIndex() method of the associated
Column instance.

	Column.dirty is no longer available. If you want to check
column index dirtiness, use Column.index.dirty.

	complib and complevel parameters have been removed from
File.createTable(), File.createEArray(), File.createCArray() and
File.createVLArray(). They were already deprecated in PyTables 1.x.

	The shape and atom parameters have been swapped in
File.createCArray(). This has been done to be consistent with
Atom() definitions (i.e. type comes before and shape after).

Deprecated features

	Node._v_rootgroup has been removed. Please use node._v_file.root
instead.

	The Node._f_isOpen() and Leaf.isOpen() methods have been removed.
Please use the Node._v_isopen attribute instead (it is much faster).

	The File.getAttrNode(), File.setAttrNode() and
File.delAttrNode() methods have been removed. Please use
File.getNodeAttr(), File.setNodeAttr() and File.delNodeAttr()
instead.

	File.copyAttrs() has been removed. Please use File.copyNodeAttrs()
instead.

	The table[colname] idiom is no longer supported. You can use
table.cols._f_col(column) for doing the same.

API refinements

	File.createEArray() received a new shape parameter. This allows to
not have to use the shape of the atom so as to set the shape of the
underlying dataset on disk.

	All the leaf constructors have received a new chunkshape parameter that
allows specifying the chunk sizes of datasets on disk.

	All File.create*() factories for Leaf nodes have received a new
byteorder parameter that allows the user to specify the byteorder in
which data will be written to disk (data in memory is now always handled in
native order).

Enjoy data!

The PyTables Team

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 What’s new in PyTables 1.4

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

What’s new in PyTables 1.4

	Author:	Francesc Altet

	Contact:	faltet@carabos.com

	Author:	Ivan Vilata i Balaguer

	Contact:	ivilata@carabos.com

This document details the modifications to PyTables since version 1.3. Its
main purpose is help you ensure that your programs will be runnable when you
switch from PyTables 1.3 to PyTables 1.4.

API additions

	The Table.getWhereList() method has got a new sort parameter. The
default now is to get the list of parameters unsorted. Set sort to True
to get the old behaviour. We’ve done this to avoid unnecessary ordering of
potentially large sets of coordinates.

	Node creation, copying and moving operations have received a new optional
createparents argument. When true, the necessary groups in the target
path that don’t exist at the time of running the operation are automatically
created, so that the target group of the operation always exists.

Backward-incompatible changes

	None

Deprecated features

	None

API refinements

	Description._v_walk() has been renamed to _f_walk(), since it is a
public method, not a value.

	Table.removeIndex() now accepts a column name in addition to an
Index instance (the later is deprecated). This avoids the user having
to retrieve the needed Index object.

Bug fixes (affecting API)

	None

Enjoy data!

The PyTables Team

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 What’s new in PyTables 1.3.3

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

What’s new in PyTables 1.3.3

	Author:	Francesc Altet

	Contact:	faltet@carabos.com

	Author:	Ivan Vilata i Balaguer

	Contact:	ivilata@carabos.com

This document details the modifications to PyTables since version 1.2. Its
main purpose is help you ensure that your programs will be runnable when you
switch from PyTables 1.2 to PyTables 1.3.3.

API additions

	None

Backward-incompatible changes

	None

Deprecated features

	None

API refinements

	None

Bug fixes (affecting API)

	None

Enjoy data!

The PyTables Team

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 What’s new in PyTables 1.3.2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

What’s new in PyTables 1.3.2

	Author:	Francesc Altet

	Contact:	faltet@carabos.com

	Author:	Ivan Vilata i Balaguer

	Contact:	ivilata@carabos.com

This document details the modifications to PyTables since version 1.2. Its
main purpose is help you ensure that your programs will be runnable when you
switch from PyTables 1.2 to PyTables 1.3.2.

API additions

	The Table.Cols accessor has received a new __setitem__() method that
allows doing things like:

table.cols[4] = record
table.cols.x[4:1000:2] = array # homogeneous column
table.cols.Info[4:1000:2] = recarray # nested column

Backward-incompatible changes

	None

Deprecated features

	None

API refinements

	Table.itersequence() has changed the default value for the sort
parameter. It is now false by default, as it is not clear if this actually
accelerates the iterator, so it is better to let the user do the proper
checks (if interested).

Bug fixes (affecting API)

	None

Enjoy data!

The PyTables Team

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 What’s new in PyTables 1.3.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

What’s new in PyTables 1.3.1

	Author:	Francesc Altet

	Contact:	faltet@carabos.com

	Author:	Ivan Vilata i Balaguer

	Contact:	ivilata@carabos.com

This document details the modifications to PyTables since version 1.2. Its
main purpose is help you ensure that your programs will be runnable when you
switch from PyTables 1.2 to PyTables 1.3.1.

API additions

	The Table.Cols accessor has received a new __setitem__() method that
allows doing things like:

table.cols[4] = record
table.cols.x[4:1000:2] = array # homogeneous column
table.cols.Info[4:1000:2] = recarray # nested column

Backward-incompatible changes

	None

Deprecated features

	None

API refinements

	Table.itersequence has changed the default value for ‘sort’ parameter. It is
now False by default, as it is not clear if this actually accelerates the
iterator, so it is better to let to the user doing the proper checks (if he
is interested at all).

Bug fixes (affecting API)

	None

Enjoy data!

The PyTables Team

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 What’s new in PyTables 1.3

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

What’s new in PyTables 1.3

	Author:	Francesc Altet

	Contact:	faltet@carabos.com

	Author:	Ivan Vilata i Balaguer

	Contact:	ivilata@carabos.com

This document details the modifications to PyTables since version 1.2. Its
main purpose is help you ensure that your programs will be runnable when you
switch from PyTables 1.2 to PyTables 1.3.

API additions

	The Table.Cols accessor has received a new __setitem__() method that
allows doing things like:

table.cols[4] = record
table.cols.x[4:1000:2] = array # homogeneous column
table.cols.Info[4:1000:2] = recarray # nested column

Backward-incompatible changes

	None

Deprecated features

	None

API refinements

	Table.itersequence has changed the default value for ‘sort’ parameter. It is
now False by default, as it is not clear if this actually accelerates the
iterator, so it is better to let to the user doing the proper checks (if he
is interested at all).

Bug fixes (affecting API)

	None

Enjoy data!

The PyTables Team

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 What’s new in PyTables 1.2.3

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

What’s new in PyTables 1.2.3

	Author:	Francesc Altet

	Contact:	faltet@carabos.com

	Author:	Ivan Vilata i Balaguer

	Contact:	ivilata@carabos.com

This document details the modifications to PyTables since version 1.2. Its
main purpose is help you ensure that your programs will be runnable when you
switch from PyTables 1.2 to PyTables 1.2.3.

API additions

	None

Backward-incompatible changes

	None

Deprecated features

	None

API refinements

	None

Bug fixes (affecting API)

	None

Enjoy data!

The PyTables Team

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 What’s new in PyTables 1.2.2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

What’s new in PyTables 1.2.2

	Author:	Francesc Altet

	Contact:	faltet@carabos.com

	Author:	Ivan Vilata i Balaguer

	Contact:	ivilata@carabos.com

This document details the modifications to PyTables since version 1.2. Its
main purpose is help you ensure that your programs will be runnable when you
switch from PyTables 1.2 to PyTables 1.2.2.

API additions

	None

Backward-incompatible changes

	None

Deprecated features

	None

API refinements

	None

Bug fixes (affecting API)

	None

Enjoy data!

The PyTables Team

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 What’s new in PyTables 1.2.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

What’s new in PyTables 1.2.1

	Author:	Francesc Altet

	Contact:	faltet@carabos.com

	Author:	Ivan Vilata i Balaguer

	Contact:	ivilata@carabos.com

This document details the modifications to PyTables since version 1.2. Its
main purpose is help you ensure that your programs will be runnable when you
switch from PyTables 1.2 to PyTables 1.2.1.

API additions

	None

Backward-incompatible changes

	None

Deprecated features

	None

API refinements

	None

Bug fixes (affecting API)

	None

Enjoy data!

The PyTables Team

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 What’s new in PyTables 1.2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

What’s new in PyTables 1.2

	Author:	Francesc Altet

	Contact:	faltet@carabos.com

	Author:	Ivan Vilata i Balaguer

	Contact:	ivilata@carabos.com

This document details the modifications to PyTables since version 1.1. Its
main purpose is help you ensure that your programs will be runnable when you
switch from PyTables 1.1 to PyTables 1.2.

API additions

	The user is now allowed to set arbitrary Python (non-persistent) attributes
on any instance of Node. If the name matches that of a child node, the
later will no longer be accessible via natural naming, but it will still be
available via File.getNode(), Group._f_getChild() and the group
children dictionaries.

Of course, this allows the user to overwrite internal (^_[cfgv]_)
PyTables variables, but this is the way most Python packages work.

	The new Group._f_getChild() method allows to get a child node (be it
visible or not) by its name. This should be more intuitive that using
getattr() or using the group children dictionaries.

	The new File.isVisibleNode(), Node._f_isVisible() and
Leaf.isVisible() methods tell whether a node is visible or not, i.e. if
the node will appear in listing operations such as Group._f_listNodes().

Backward-incompatible changes

	File.objects, File.groups and File.leaves can no longer be used
to iterate over all the nodes in the file. However, they still may be used
to access any node by its path.

	File.__contains__() returns a true value when it is asked for an
existent node, be it visible or not. This is more consistent with
Group.__contains__().

	Using Group.__delattr__() to remove a child is no longer supported.
Please use Group._f_remove() instead.

	The indexprops attribute is now present on all Table instances, be
they indexed or not. In the last case, it is None.

	Table.getWhereList() now has flavor parameter equal to “NumArray” by
default, which is more consistent with other methods. Before, flavor
defaulted to “List”.

	The extVersion variable does no longer exist. It did not make much
sense either, since the canonical version of the whole PyTables package is
that of __version__.

	The Row.nrow() has been converted into a property, so you have to
replace any call to Row.nrow() into Row.nrow.

Deprecated features

	The objects, groups and leaves mappings in File are retained
only for compatibility purposes. Using File.getNode() is recommended to
access nodes, File.__contains__() to check for node existence, and
File.walkNodes() for iteration purposes. Using isinstance() and
isVisible() methods is the preferred way of checking node type and
visibility.

Please note that the aforementioned mappings use the named methods
internally, so the former have no special performance gains over the later.

API refinements

	The isHDF5File() and isPyTablesFile() functions know how to handle
nonexistent or unreadable files. An IOError is raised in those cases.

Bug fixes (affecting API)

	None

Enjoy data!

The PyTables Team

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 What’s new in PyTables 1.1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

What’s new in PyTables 1.1.1

	Author:	Francesc Altet

	Contact:	faltet@carabos.com

	Author:	Ivan Vilata i Balaguer

	Contact:	ivilata@carabos.com

This document details the modifications to PyTables since version 1.0.
Its main purpose is help you ensure that your programs will be runnable
when you switch from PyTables 1.0 to PyTables 1.1.1.

API additions

	None

Backward-incompatible changes

	Table.read() raises a KeyError instead of a ValueError
when a nonexistent field name is specified, for consistency with other
methods. The same goes for the col() method.

	File.__contains__() returns a true value when it is asked for an
existent node, be it visible or not. This is more consistent with
Group.__contains__().

API refinements

	Using table.cols['colname'] is deprecated. The usage of
table.cols._f_col('colname') (with the new Cols._f_col()
method) is preferred.

Bug fixes (affecting API)

	None

Enjoy data!

The PyTables Team

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 What’s new in PyTables 1.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

What’s new in PyTables 1.1

	Author:	Francesc Altet

	Contact:	faltet@carabos.com

	Author:	Ivan Vilata i Balaguer

	Contact:	ivilata@carabos.com

This document details the modifications to PyTables since version 1.0. Its
main purpose is help you ensure that your programs will be runnable when you
switch from PyTables 1.0 to PyTables 1.1.

API additions

	something...

Backward-incompatible changes

	Table.read() raises a KeyError instead of a ValueError when a
nonexistent field name is specified, for consistency with other methods.
The same goes for the col() method.

	File.__contains__() returns a true value when it is asked for an existent
node, be it visible or not. This is more consistent with
Group.__contains__().

API refinements

	Using table.cols['colname'] is deprecated. The usage of
table.cols._f_col('colname') (with the new Cols._f_col() method) is
preferred.

Bug fixes (affecting API)

	something...

Enjoy data!

The PyTables Team

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 What’s new in PyTables 1.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

What’s new in PyTables 1.0

	Author:	Francesc Altet

	Contact:	faltet@carabos.com

	Author:	Ivan Vilata i Balaguer

	Contact:	ivilata@carabos.com

This document details the modifications to PyTables since version 0.9.1. Its
main purpose is help you ensure that your programs will be runnable when you
switch from PyTables 0.9.1 to PyTables 1.0.

API additions

	The new Table.col() method can be used to get a column from a table as a
NumArray or CharArray object. This is preferred over the syntax
table['colname'].

	The new Table.readCoordinates() method reads a set of rows given their
indexes into an in-memory object.

	The new Table.readAppend() method Append rows fullfilling the condition
to a destination table.

Backward-incompatible changes

	Trying to open a nonexistent file or a file of unknown type raises
IOError instead of RuntimeError. Using an invalid mode raises
ValueError instead of RuntimeError.

	Getting a child node from a closed group raises ValueError instead of
RuntimeError.

	Running an action on the wrong type of node now (i.e. using
file.listNodes() on a leaf) raises a TypeError instead of a
NodeError.

	Removing a non-existing child now raises a NoSuchNodeError, instead of
doing nothing.

	Removing a non-empty child group using del group.child fails with a
NodeError instead of recursively doing the removal. This is because of
the potential damage it may cause when used inadvertently. If a recursive
behavior is needed, use the _f_remove() method of the child node.

	The recursive flag of Group._f_walkNodes() is True by default now.
Before it was False.

	Now, deleting and getting a non-existing attribute raises an
AttributeError instead of a RuntimeError.

	Swapped last two arguments of File.copyAttrs() to match the other
methods. Please use File.copyNodeAttrs() anyway.

	Failing to infer the size of a string column raises ValueError instead
of RuntimeError.

	Excessive table column name length and number of columns now raise
ValueError instead of IndexError and NameError.

	Excessive table row length now raises ValueError instead of
RuntimeError.

	table[integer] returns a numarray.records.Record object instead of a
tuple. This was the original behavior before PyTables 0.9 and proved to be
more consistent than the last one (tables do not have an explicit ordering
of columns).

	Specifying a nonexistent column in Table.read() raises a ValueError
instead of a LookupError.

	When start >= stop an empty iterator is returned by Table.iterrows()
instead of an empty RecArray. Thanks to Ashley Walsh for noting this.

	The interface of isHDF5File() and isPyTablesFile() file has been
unified so that they both return true or false values on success and raise
HDF5ExtError or errors. The true value in isPyTablesFile() is the
format version string of the file.

	Table.whereIndexed() and Table.whereInRange() are now private
methods, since the Table.where() method is able to choose the most
adequate option.

	The global variables ExtVersion and HDF5Version have been renamed to
extVersion and hdf5Version, respectively.

	whichLibVersion() returns None on querying unavailable libraries,
and raises ValueError on unknown ones.

The following modifications, though being (strictly speaking) modifications of
the API, will most probably not cause compatibility problems (but your mileage
may vary):

	The default values for name and classname arguments in
File.getNode() are now None, although the empty string is still
allowed for backwards compatibility. File hierarchy manipulation and
attribute handling operations using those arguments have changed to reflect
this.

	Copy operations (Group._f_copyChildren(), File.copyChildren(),
File.copyNode()...) do no longer return a tuple with the new node and
statistics. Instead, they only return the new node, and statistics are
collected via an optional keyword argument.

	The copyFile() function in File.py has changed its signature from:

copyFile(srcfilename=None, dstfilename=None, title=None, filters=None,
 copyuserattrs=True, overwrite=False, stats=None)

to:

copyFile(srcfilename, dstfilename, overwrite=False, **kwargs)

Thus, the function allows the same options as File.copyFile().

	The File.copyFile() method has changed its signature from:

copyFile(self, dstfilename=None, title=None, filters=None,
 copyuserattrs=1, overwrite=0, stats=None):

to:

copyFile(self, dstfilename, overwrite=False, **kwargs)

This enables this method to pass on arbitrary flags and options supported by
copying methods of inner nodes in the hierarchy.

	The File.copyChildren() method has changed its signature from:

copyChildren(self, wheresrc, wheredst, recursive=False, filters=None,
 copyuserattrs=True, start=0, stop=None, step=1,
 overwrite=False, stats=None)

to:

copyChildren(self, srcgroup, dstgroup, overwrite=False, recursive=False,
 **kwargs):

Thus, the function allows the same options as Group._f_copyChildren().

	The Group._f_copyChildren() method has changed its signature from:

_f_copyChildren(self, where, recursive=False, filters=None,
 copyuserattrs=True, start=0, stop=None, step=1,
 overwrite=False, stats=None)

to:

_f_copyChildren(self, dstgroup, overwrite=False, recursive=False,
 **kwargs)

This enables this method to pass on arbitrary flags and options supported by
copying methods of inner nodes in the group.

	Renamed srcFilename and dstFilename arguments in copyFile() and
File.copyFile() to srcfilename and dstfilename, respectively.
Renamed whereSrc and whereDst arguments in File.copyChildren()
to wheresrc and wheredst, respectively. Renamed dstNode
argument in File.copyAttrs() to dstnode. Tose arguments should be
easier to type in interactive sessions (although 99% of the time it is not
necessary to specify them).

	Renamed object argument in EArray.append() to sequence.

	The rows argument in Table.append() is now compulsory.

	The start argument in Table.removeRows() is now compulsory.

API refinements

	The isHDF5() function has been deprecated in favor of isHDF5File().

	Node attribute-handling methods in File have been renamed for a better
coherence and understanding of their purpose:

	getAttrNode() is now called getNodeAttr()

	setAttrNode() is now called setNodeAttr()

	delAttrNode() is now called delNodeAttr()

	copyAttrs() is now called copyNodeAttrs()

They keep their respective signatures, and the old versions still exist for
backwards compatibility, though they issue a DeprecationWarning.

	Using VLArray.append() with multiple arguments is now deprecated for its
ambiguity. You should put the arguments in a single sequence object (list,
tuple, array...) and pass it as the only argument.

	Using table['colname'] is deprecated. Using table.col('colname')
(with the new col() method) is preferred.

Bug fixes (affecting API)

	Table.iterrows() returns an empty iterator when no rows are selected,
instead of returning None.

Enjoy data!

The PyTables Team

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 What’s new in PyTables 0.9.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

What’s new in PyTables 0.9.1

This release is mainly a maintenance version. In it, some bugs has
been fixed and a few improvements has been made. One important thing
is that chunk sizes in EArrays has been re-tuned to get much better
performance. Besides, it has been tested against the latest Python 2.4
and all unit tests seems to pass fine.

More in detail:

Improvements:

	The chunksize computation for EArrays has been re-tuned to allow the
compression rations that were usual before 0.9 release.

	New –unpackshort and –quantize flags has been added to nctoh5
script. –unpackshort unpack short integer variables to float
variables using scale_factor and add_offset netCDF variable
attributes. –quantize quantize data to improve compression using
least_significant_digit netCDF variable attribute (not active by
default). See
http://www.esrl.noaa.gov/psd/data/gridded/conventions/cdc_netcdf_standard.shtml
for further explanation of what this attribute means. Thanks to Jeff
Whitaker for providing this.

	Table.itersequence has received a new parameter called “sort”. This
allows to disable the sorting of the sequence in case the user wants
so.

Backward-incompatible changes:

	Now, the AttributeSet class throw an AttributeError on __getattr__
for nonexistent attributes in it. Formerly, the routine returned
None, which is pretty much against convention in Python and breaks
the built-in hasattr() function. Thanks to Robert Nemec for noting
this and offering a patch.

	VLArray.read() has changed its behaviour. Now, it always returns a
list, as stated in documentation, even when the number of elements
to return is 0 or 1. This is much more consistent when representing
the actual number of elements on a certain VLArray row.

API additions:

	A Row.getTable() has been added. It is an accessor for the associated
Table object.

	A File.copyAttrs() has been added. It allows copying attributes from
one leaf to other. Properly speaking, this was already there, but not
documented :-/

Bug fixes:

	Now, the copy of hierarchies works even when there are scalar Arrays
(i.e. Arrays which shape is ()) on it. Thanks to Robert Nemec for
providing a patch.

	Solved a memory leak regarding the Filters instance associated with
the File object, that was not released after closing the file. Now,
there are no known leaks on PyTables itself.

	Improved security of nodes name checking. Closes #1074335

Enjoy data!,

– Francesc Altet
falted@pytables.org

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 What’s new in PyTables 0.9

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

What’s new in PyTables 0.9

On this release you will find a series of quite
exciting new features, being the most important the indexing
capabilities, in-kernel selections, support for complex datatypes and
the possibility to modify values in both tables and arrays (yeah,
finally :).

New features:

	Indexing of columns in tables. That allow to make data selections on
tables up to 500 times faster than standard selections (for
ex. doing a selection along an indexed column of 100 milion of rows
takes less than 1 second on a modern CPU). Perhaps the most
interesting thing about the indexing algorithm implemented by
PyTables is that the time taken to index grows lineraly with the
length of the data, so, making the indexation process to be
scalable (quite differently to many relational databases). This
means that it can index, in a relatively quick way, arbitrarily
large table columns (for ex. indexing a column of 100 milion of rows
takes just 100 seconds, i.e. at a rate of 1 Mrow/sec). See more
detailed info about that in http://www.pytables.org/docs/SciPy04.pdf.

	In-kernel selections. This feature allow to make data selections on
tables up to 5 times faster than standard selections (i.e. pre-0.9
selections), without a need to create an index. As a hint of how
fast these selections can be, they are up to 10 times faster than a
traditional relational database. Again, see
http://www.pytables.org/docs/SciPy04.pdf for some experiments on that
matter.

	Support of complex datatypes for all the data objects (i.e. Table,
Array, EArray and VLArray). With that, the complete set of datatypes
of Numeric and numarray packages are supported. Thanks to Tom Hedley
for providing the patches for Array, EArray and VLArray objects, as
well as updating the User’s Manual and adding unit tests for the new
functionality.

	Modification of values. You can modifiy Table, Array, EArray and
VLArray values. See Table.modifyRows, Table.modifyColumns() and the
newly introduced __setitem__() method for Table, Array, EArray and
VLArray entities in the Library Reference of User’s Manual.

	A new sub-package called “nodes” is there. On it, there will be
included different modules to make more easy working with different
entities (like images, files, ...). The first module that has been
added to this sub-package is “FileNode”, whose mission is to enable
the creation of a database of nodes which can be used like regular
opened files in Python. In other words, you can store a set of
files in a PyTables database, and read and write it as you would do
with any other file in Python. Thanks to Ivan Vilata i Balaguer for
contributing this.

Improvements:

	New __len__(self) methods added in Arrays, Tables and Columns. This,
in combination with __getitem__(self,key) allows to better emulate
sequences.

	Better capabilities to import generic HDF5 files. In particular,
Table objects (in the HDF5_HL naming schema) with “holes” in their
compound type definition are supported. That allows to read certain
files produced by NASA (thanks to Stephen Walton for reporting this).

	Much improved test units. More than 2000 different tests has been
implemented which accounts for more than 13000 loc (this represents
twice of the PyTables library code itself (!)).

Backward-incompatible API changes:

	The __call__ special method has been removed from objects File,
Group, Table, Array, EArray and VLArray. Now, you should use
walkNodes() in File and Group and iterrows in Table, Array, EArray
and VLArray to get the same functionality. This would provide better
compatibility with IPython as well.

‘nctoh5’, a new importing utility:

	Jeff Whitaker has contributed a script to easily convert NetCDF
files into HDF5 files using Scientific Python and PyTables. It has
been included and documented as a new utility.

Bug fixes:

	A call to File.flush() now invoke a call to H5Fflush() so to
effectively flushing all the file contents to disk. Thanks to Shack
Toms for reporting this and providing a patch.

	SF #1054683: Security hole in utils.checkNameValidity(). Reported in
2004-10-26 by ivilata

	SF #1049297: Suggestion: new method File.delAttrNode(). Reported in
2004-10-18 by ivilata

	SF #1049285: Leak in AttributeSet.__delattr__(). Reported in
2004-10-18 by ivilata

	SF #1014298: Wrong method call in examples/tutorial1-2.py. Reported
in 2004-08-23 by ivilata

	SF #1013202: Cryptic error appending to EArray on RO file. Reported
in 2004-08-21 by ivilata

	SF #991715: Table.read(field=”var1”, flavor=”List”) fails. Reported
in 2004-07-15 by falted

	SF #988547: Wrong file type assumption in File.__new__. Reported in
2004-07-10 by ivilata

Bon profit!,

– Francesc Altet
falted@pytables.org

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 What’s new in PyTables 0.8

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

What’s new in PyTables 0.8

On this release, many enhancements has been added and some bugs has
been fixed. Here is the (non-exhaustive) list:

	The new VLArray class enables you to store large lists of rows
containing variable numbers of elements. The elements can
be scalars or fully multimensional objects, in the PyTables
tradition. This class supports two special objects as rows:
Unicode strings (UTF-8 codification is used internally) and
generic Python objects (through the use of cPickle).

	The new EArray class allows you to enlarge already existing
multidimensional homogeneous data objects. Consider it
an extension of the already existing Array class, but
with more functionality. Online compression or other filters
can be applied to EArray instances, for example.

Another nice feature of EA’s is their support for fully
multidimensional data selection with extended slices. You
can write “earray[1,2:3,...,4:200]”, for example, to get the
desired dataset slice from the disk. This is implemented
using the powerful selection capabilities of the HDF5
library, which results in very highly efficient I/O
operations. The same functionality has been added to Array
objects as well.

	New UnImplemented class. If a dataset contains unsupported
datatypes, it will be associated with an UnImplemented
instance, then inserted into to the object tree as usual.
This allows you to continue to work with supported objects
while retaining access to attributes of unsupported
datasets. This has changed from previous versions, where a
RuntimeError occurred when an unsupported object was
encountered.

The combination of the new UnImplemented class with the
support for new datatypes will enable PyTables to greatly
increase the number of types of native HDF5 files that can
be read and modified.

	Boolean support has been added for all the Leaf objects.

	The Table class has now an append() method that allows you
to save large buffers of data in one go (i.e. bypassing the
Row accessor). This can greatly improve data gathering
speed.

	
	The standard HDF5 shuffle filter (to further enhance the

	compression level) is supported.

	The standard HDF5 fletcher32 checksum filter is supported.

	As the supported number of filters is growing (and may be
further increased in the future), a Filters() class has been
introduced to handle filters more easily. In order to add
support for this class, it was necessary to make a change in
the createTable() method that is not backwards compatible:
the “compress” and “complib” parameters are deprecated now
and the “filters” parameter should be used in their
place. You will be able to continue using the old parameters
(only a Deprecation warning will be issued) for the next few
releases, but you should migrate to the new version as soon
as possible. In general, you can easily migrate old code by
substituting code in its place:

table = fileh.createTable(group, 'table', Test, '', complevel, complib)

should be replaced by:

table = fileh.createTable(group, 'table', Test, '',
 Filters(complevel, complib))

	A copy() method that supports slicing and modification of
filtering capabilities has been added for all the Leaf
objects. See the User’s Manual for more information.

	A couple of new methods, namely copyFile() and copyChilds(),
have been added to File class, to permit easy replication
of complete hierarchies or sub-hierarchies, even to
other files. You can change filters during the copy
process as well.

	Two new utilities has been added: ptdump and
ptrepack. The utility ptdump allows the user to examine
the contents of PyTables files (both metadata and actual
data). The powerful ptrepack utility lets you
selectively copy (portions of) hierarchies to specific
locations in other files. It can be also used as an
importer for generic HDF5 files.

	The meaning of the stop parameter in read() methods has
changed. Now a value of ‘None’ means the last row, and a
value of 0 (zero) means the first row. This is more
consistent with the range() function in python and the
__getitem__() special method in numarray.

	The method Table.removeRows() is no longer limited by table
size. You can now delete rows regardless of the size of the
table.

	The “numarray” value has been added to the flavor parameter
in the Table.read() method for completeness.

	The attributes (.attr instance variable) are Python
properties now. Access to their values is no longer
lazy, i.e. you will be able to see both system or user
attributes from the command line using the tab-completion
capability of your python console (if enabled).

	Documentation has been greatly improved to explain all the
new functionality. In particular, the internal format of
PyTables is now fully described. You can now build
“native” PyTables files using any generic HDF5 software
by just duplicating their format.

	Many new tests have been added, not only to check new
functionality but also to more stringently check
existing functionality. There are more than 800 different
tests now (and the number is increasing :).

	PyTables has a new record in the data size that fits in one
single file: more than 5 TB (yeah, more than 5000 GB), that
accounts for 11 GB compressed, has been created on an AMD
Opteron machine running Linux-64 (the 64 bits version of the
Linux kernel). See the gory details in:
http://pytables.sf.net/html/HowFast.html.

	New platforms supported: PyTables has been compiled and tested
under Linux32 (Intel), Linux64 (AMD Opteron and Alpha), Win32
(Intel), MacOSX (PowerPC), FreeBSD (Intel), Solaris (6, 7, 8
and 9 with UltraSparc), IRIX64 (IRIX 6.5 with R12000) and it
probably works in many more architectures. In particular,
release 0.8 is the first one that provides a relatively clean
porting to 64-bit platforms.

	As always, some bugs have been solved (especially bugs that
occur when deleting and/or overwriting attributes).

	And last, but definitely not least, a new donations section
has been added to the PyTables web site
(http://sourceforge.net/projects/pytables, then follow the
“Donations” tag). If you like PyTables and want this effort
to continue, please, donate!

Enjoy!,

– Francesc Alted
falted@pytables.org

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 What’s new in PyTables 0.7.2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

What’s new in PyTables 0.7.2

This is a mainly a maintenance release, where the next issues has
been addressed:

	Fixed a nasty memory leak located on the C libraries (It was
occurring during attribute writes). After that, the memory
consumption when using large object trees has dropped quite
a bit. However, there remains some small leaks that has been
tracked down to the underlying numarray library. These leaks
has been reported, and hopefully they should be fixed more
sooner than later.

	Table buffers are built dinamically now, so if Tables are
not accessed for reading or writing this memory will not be
booked. This will help to reduce the memory consumption.

	The opening of files with lots of nodes has been optimized
between a factor 2 and 3. For example, a file with 10 groups
and 3000 tables that takes 9.3 seconds to open in 0.7.1, now
takes only 2.8 seconds.

	The Table.read() method has been refactored and optimized
and some parts of its code has been moved to Pyrex. In
particular, in the special case of step=1, up to a factor 5
of speedup (reaching 160 MB/s on a Pentium4 @ 2 GHz) when
reading table contents can be achieved now.

Enjoy!,

– Francesc Alted
falted@openlc.org

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 PyTables 0.7.1 is out!

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

PyTables 0.7.1 is out!

This is a mainly a bug-fixing release, where the next problems has
been addressed:

	Fixed several memory leaks. After that, the memory
consumption when using large object trees has dropped
sensibly. However, there remains some small leaks, but
hopefully they are not very important unless you use huge
object trees.

	Fixed a bug that make the __getitem__ special method in
table to fail when the stop parameter in a extended slice
was not specified. That is, table[10:] now correctly returns
table[10:table.nrows+1], and not table[10:11].

	The removeRows() method in Table did not update the NROWS
attribute in Table objects, giving place to errors after
doing further updating operations (removing or adding more
rows) in the same table. This has been fixed now.

Apart of these fixes, a new lazy reading algorithm for attributes has
been activated by default. With that, the opening of objects with
large hierarchies has been improved by 60% (you can obtain another
additional 10% if using python 2.3 instead of python 2.2). The
documentation has been updated as well, specially a more detailed
instructions on the compression (zlib) libraries installation.

Also, a stress test has been conducted in order to see if PyTables can
really work not only with large data tables, but also with large
object trees. In it, it has been generated and checked a file with
more than 1 TB of size and more than 100 thousand tables on it!. See
http://www.pytables.org/moin/StressTestsBck for details.

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Release notes for PyTables 2.2 series

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

Release notes for PyTables 2.2 series

	Author:	Francesc Alted i Abad

	Contact:	faltet@pytables.org

Changes from 2.2.1rc1 to 2.2.1

	The Row accessor implements a new __contains__ special method that
allows doing things like:

for row in table:
 if item in row:
 print "Value found in row", row.nrow
 break

Closes #309.

	PyTables is more friendly with easy_install and pip now, as all the
Python dependencies should be installed automatically. Closes #298.

Changes from 2.2 to 2.2.1rc1

	When using ObjectAtom objects in VLArrays the HIGHEST_PROTOCOL
is used for pickling objects. For NumPy arrays, this simple change
leads to space savings up to 3x and time improvements up to 30x.
Closes #301.

	The Row accessor implements a new __contains__ special method that
allows doing things like:

for row in table:
 if item in row:
 print "Value found in row", row.nrow
 break

Closes #309.

	tables.Expr can perform operations on scalars now. Thanks to Gaëtan
de Menten for providing a patch for this. Closes #287.

	Fixed a problem with indexes larger than 32-bit on leaf objects on
32-bit machines. Fixes #283.

	Merged in Blosc 1.1.2 for fixing a problem with large datatypes and
subprocess issues. Closes #288 and #295.

	Due to the adoption of Blosc 1.1.2, the pthreads-win32 library
dependency is dropped on Windows platforms.

	Fixed a problem with tables.Expr and operands with vary large
rowsizes. Closes #300.

	leaf[numpy.array[scalar]] idiom returns a NumPy array instead of
an scalar. This has been done for compatibility with NumPy. Closes
#303.

	Optimization for Table.copy() so that FIELD_* attrs are not
overwritten during the copy. This can lead to speed-ups up to 100x
for short tables that have hundreds of columns. Closes #304.

	For external links, its relative paths are resolved now with respect
to the directory of the main HDF5 file, rather than with respect to
the current directory. Closes #306.

	Expr.setInputsRange() and Expr.setOutputRange() do support
numpy.integer types now. Closes #285.

	Column names in tables can start with ‘__’ now. Closes #291.

	Unicode empty strings are supported now as atributes. Addresses #307.

	Cython 0.13 and higher is supported now. Fixes #293.

	PyTables should be more ‘easy_install’-able now. Addresses #298.

Changes from 2.2rc2 to 2.2 (final)

	Updated Blosc to 1.0 (final).

	Filter ID of Blosc changed from wrong 32010 to reserved 32001. This
will prevent PyTables 2.2 (final) to read files created with Blosc and
PyTables 2.2 pre-final. ptrepack can be used to retrieve those
files, if necessary. More info in ticket #281.

	Recent benchmarks suggest a new parametrization is better in most
scenarios:

	The default chunksize has been doubled for every dataset size. This
works better in most of scenarios, specially with the new Blosc
compressor.

	The HDF5 CHUNK_CACHE_SIZE parameter has been raised to 2 MB in order
to better adapt to the chunksize increase. This provides better hit
ratio (at the cost of consuming more memory).

Some plots have been added to the User’s Manual (chapter 5) showing
how the new parametrization works.

Changes from 2.2rc1 to 2.2rc2

	A new version of Blosc (0.9.5) is included. This version is now
considered to be stable and apt for production. Thanks for all
PyTables users that have contributed to find and report bugs.

	Added a new IO_BUFFER_SIZE parameter to tables/parameters.py
that allows to set the internal PyTables’ buffer for doing I/O. This
replaces CHUNKTIMES but it is more general because it affects to all
Leaf objects and also the tables.Expr module (and not only tables
as before).

	BUFFERTIMES parameter in tables/parameters.py has been
renamed to BUFFER_TIMES which is more consistent with other
parameter names.

	On Windows platforms, the path to the tables module is now appended to
sys.path and the PATH environment variable. That way DLLs and PYDs in
the tables directory are to be found now. Thanks to Christoph Gohlke
for the hint.

	A replacement for barriers for Mac OSX, or other systems not
implementing them, has been carried out. This allows to compile
PyTables on such platforms. Fixes #278

	Fixed a couple of warts that raise compatibility warnings with
forthcoming Python 2.7.

	HDF5 1.8.5 is used in Windows binaries.

Changes from 2.2b3 to 2.2rc1

	Numexpr is not included anymore in PyTables and has become a requisite
instead. This is because Numexpr already has decent enough installers
and is available in the PyPI repository also, so it should be easy for
users to fulfill this dependency.

	When using a Numexpr package that is turbo-loaded with Intel’s
VML/MKL, the parameter MAX_THREADS will control the number of
threads that VML can use during computations. For a finer control,
the numexpr.set_vml_num_threads() can always be used.

	Cython is used now instead of Pyrex for Pyrex extensions.

	Updated to 0.9 version of Blosc compressor. This version can make use
of threads so as to accelerate the compression/decompression process.
In order to change the maximum number of threads that Blosc can use (2
by default), you can modify the MAX_THREADS variable in
tables/parameters.py or make use of the new setBloscMaxThreads()
global function.

	Reopening already opened files is supported now, provided that there is
not incompatibility among intended usages (for example, you cannot
reopen in append mode an already opened file in read-only mode).

	Option --print-versions for test_all.py script is now
preferred over the deprecated --show-versions. This is more
consistent with the existing print_versions() function.

	Fixed a bug that, under some circumstances, prevented the use of table
iterators in itertool.groupby(). Now, you can safely do things
like:

sel_rows = table.where('(row_id >= 3)')
for group_id, grouped_rows in itertools.groupby(sel_rows, f_group):
 group_mean = average([row['row_id'] for row in grouped_rows])

Fixes #264.

	Copies of Array objects with multidimensional atoms (coming from
native HDF5 files) work correctly now (i.e. the copy holds the atom
dimensionality). Fixes #275.

	The tables.openFile() function does not try anymore to open/close
the file in order to guess whether it is a HDF5 or PyTables one before
opening it definitely. This allows the fcntl.flock() and
fcntl.lockf() Python functions to work correctly now (that’s useful
for arbitrating access to the file by different processes). Thanks to
Dag Sverre Seljebotn and Ivan Vilata for their suggestions on hunting
this one! Fixes #185.

	The estimation of the chunksize when using multidimensional atoms in
EArray/Carray was wrong because it did not take in account the shape
of the atom. Thanks to Ralf Juengling for reporting. Fixes #273.

	Non-contiguous arrays can now safely be saved as attributes. Before,
if arrays were not contiguous, incorrect data was saved in attr.
Fixes #270.

	EXTDIM attribute for CArray/EArray now saves the correct extendeable
dimension, instead of rubbish. This does not affected functionality,
because extendeable dimension was retrieved directly from shape
information, but it was providing misleading information to the user.
Fixes #268.

API changes

	Now, Table.Cols.__len__() returns the number of top level columns
instead of the number of rows in table. This is more consistent in
that Table.Cols is an accessor for columns. Fixes #276.

Changes from 2.2b2 to 2.2b3

	Blosc compressor has been added as an additional filter, in addition
to the existing Zlib, LZO and bzip2. This new compressor is meant for
fast compression and extremely fast decompression. Fixes #265.

	In File.copyFile() method, copyuserattrs was set to false as
default. This was unconsistent with other methods where the default
value for copyuserattrs is true. The default for this is true now.
Closes #261.

	tables.copyFile and File.copyFile recognize now the parameters
present in tables/parameters.py. Fixes #262.

	Backported fix for issue #25 in Numexpr (OP_NEG_LL treats the argument
as an int, not a long long). Thanks to David Cooke for this.

	CHUNK_CACHE_NELMTS in tables/paramters.py set to a prime number as
Neil Fortner suggested.

	Workaround for a problem in Python 2.6.4 (and probably other versions
too) for pickling strings like “0” or “0.”. Fixes #253.

Changes from 2.2b1 to 2.2b2

Enhancements

	Support for HDF5 hard links, soft links and external links (when
PyTables is compiled against HDF5 1.8.x series). A new tutorial about
its usage has been added to the ‘Tutorials’ chapter of User’s Manual.
Closes #239 and #247.

	Added support for setting HDF5 chunk cache parameters in file
opening/creating time. ‘CHUNK_CACHE_NELMTS’, ‘CHUNK_CACHE_PREEMPT’
and ‘CHUNK_CACHE_SIZE’ are the new parameters. See “PyTables’
parameter files” appendix in User’s Manual for more info. Closes
#221.

	New Unknown class added so that objects that HDF5 identifies as
H5G_UNKNOWN can be mapped to it and continue operations
gracefully.

	Optimization in the indexed queries when the resulting rows increase
monotonically. From 3x (for medium-size query results) and 10x (for very
large query results) speed-ups can be expected.

	Added flag –dont-create-sysattrs to ptrepack so as to not
create sys attrs (default is to do it).

	Support for native compound types in attributes. This allows for
better compatibility with HDF5 files. Closes #208.

	Support for native NumPy dtype in the description parameter of
File.createTable(). Closes #238.

Bugs fixed

	Added missing _c_classId attribute to the UnImplemented class.
ptrepack no longer chokes while copying Unimplemented classes.

	The FIELD_* sys attrs are no longer copied when the
PYTABLES_SYS_ATTRS parameter is set to false.

	File.createTable() no longer segfaults if description=None. Closes
#248.

	Workaround for avoiding a Python issue causing a segfault when saving
and then retrieving a string attribute with values “0” or “0.”.
Closes #253.

API changes

	Row.__contains__() disabled because it has little sense to query for
a key in Row, and the correct way should be to query for it in
Table.colnames or Table.colpathnames better. Closes #241.

	[Semantic change] To avoid a common pitfall when asking for the string
representation of a Row class, Row.__str__() has been redefined.
Now, it prints something like:

>>> for row in table:
... print row
...
/newgroup/table.row (Row), pointing to row #0
/newgroup/table.row (Row), pointing to row #1
/newgroup/table.row (Row), pointing to row #2

instead of:

>>> for row in table:
... print row
...
('Particle: 0', 0, 10, 0.0, 0.0)
('Particle: 1', 1, 9, 1.0, 1.0)
('Particle: 2', 2, 8, 4.0, 4.0)

Use print row[:] idiom if you want to reproduce the old behaviour.
Closes #252.

Other changes

	After some improvements in both HDF5 and PyTables, the limit before
emitting a PerformanceWarning on the number of children in a group
has been raised from 4096 to 16384.

Changes from 2.1.1 to 2.2b1

Enhancements

	Added Expr, a class for evaluating expressions containing
array-like objects. It can evaluate expressions (like ‘3*a+4*b’)
that operate on arbitrary large arrays while optimizing the
resources (basically main memory and CPU cache memory) required to
perform them. It is similar to the Numexpr package, but in addition
to NumPy objects, it also accepts disk-based homogeneous arrays,
like the Array, CArray, EArray and Column PyTables objects.

	Added support for NumPy’s extended slicing in all Leaf objects.
With that, you can do the next sort of selections:

array1 = array[4] # simple selection
array2 = array[4:1000:2] # slice selection
array3 = array[1, ..., ::2, 1:4, 4:] # general slice selection
array4 = array[1, [1,5,10], ..., -1] # fancy selection
array5 = array[np.where(array[:] > 4)] # point selection
array6 = array[array[:] > 4] # boolean selection

Thanks to Andrew Collette for implementing this for h5py, from which
it has been backported. Closes #198 and #209.

	Numexpr updated to 1.3.1. This can lead to up a 25% improvement of
the time for both in-kernel and indexed queries for unaligned
tables.

	HDF5 1.8.3 supported.

Bugs fixed

	Fixed problems when modifying multidimensional columns in Table
objects. Closes #228.

	Row attribute is no longer stalled after a table move or rename.
Fixes #224.

	Array.__getitem__(scalar) returns a NumPy scalar now, instead of a
0-dim NumPy array. This should not be noticed by normal users,
unless they check for the type of returned value. Fixes #222.

API changes

	Added a dtype attribute for all leaves. This is the NumPy
dtype that most closely matches the leaf type. This allows for
a quick-and-dirty check of leaf types. Closes #230.

	Added a shape attribute for Column objects. This is formed by
concatenating the length of the column and the shape of its type.
Also, the representation of columns has changed an now includes the
length of the column as the leading dimension. Closes #231.

	Added a new maindim attribute for Column which has the 0 value
(the leading dimension). This allows for a better similarity with
other *Array objects.

	In order to be consistent and allow the extended slicing to happen
in VLArray objects too, VLArray.__setitem__() is not able to
partially modify rows based on the second dimension passed as key.
If this is tried, an IndexError is raised now. Closes #210.

	The forceCSI flag has been replaced by checkCSI in the next
Table methods: copy(), readSorted() and itersorted(). The
change reflects the fact that a re-index operation cannot be
triggered from these methods anymore. The rational for the change
is that an indexing operation is a potentially very expensive
operation that should be carried out explicitly instead of being
triggered by methods that should not be in charge of this task.
Closes #216.

Backward incompatible changes

	After the introduction of the shape attribute for Column
objects, the shape information for multidimensional columns has been
removed from the dtype attribute (it is set to the base type of
the column now). Closes #232.

Enjoy data!

– The PyTables Team

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Release notes for PyTables 2.1 series

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

Release notes for PyTables 2.1 series

	Author:	Francesc Alted i Abad

	Contact:	faltet@pytables.org

Changes from 2.1.1 to 2.1.2

Bug fixes

	Solved problems with Table.modifyColumn() when the column(s) is
multidimensional. Fixes #228.

	The row attribute of a table seems stalled after a table move or
rename. Fixes #224.

	Fixed a problem with len(array) in 32-bit platforms when array
is large enough (> 2**31).

	Added missing _c_classId attribute to the UnImplemented class.
ptrepack no longer chokes while copying Unimplemented classes.

	The FIELD_* sys attrs are no longer copied when the
PYTABLES_SYS_ATTRS parameter is set to false.

	The FILTERS attribute is not added anymore when
PYTABLES_SYS_ATTR parameter is set to false.

	Disable the printing of Unicode characters that cannot be printed on
win32 platform. Fixes #235.

Other changes

	When retrieving a row of a 1-dimensional array, a 0-dim array was
returned instead of a numpy scalar. Now, an actuall numpy scalar is
returned. Closes #222.

	LZO and bzip2 filters adapted to an API fix introduced in HDF5
1.8.3. Closes #225.

	Unsupported HDF5 types in attributes are no longer transferred
during copies. A new _v_unimplemented list have been added in
AttributeSet class so as to keep track of such attributes. Closes
#240.

	LZO binaries have disappeared from the GnuWin32 repository. Until
they come eventually back, they have been put at
http://www.pytables.org/download/lzo-win. This has been documented
in the install chapter.

Changes from 2.1 to 2.1.1

Bug fixes

	Fixed a memory leak when a lot of queries were made. Closes #203
and #207.

	The chunkshape=”auto” parameter value of Leaf.copy() is honored
now, even when the (start, stop, step) parameters are specified.
Closes #204.

	Due to a flaw in its design, the File class was not able to be
subclassed. This has been fixed. Closes #205.

	Default values were not correctly retrieved when opening already
created CArray/EArray objects. Fixed. Closes #212.

	Fixed a problem with the installation of the nctoh5 script that
prevented it from being executed. Closes #215.

	[Pro] The iterseq cache ignored non-indexed conditions, giving
wrong results when those appeared in condition expressions. This
has been fixed. Closes #206.

Other changes

	openFile(), isHDF5File() and isPyTablesFile() functions accept
Unicode filenames now. Closes #202 and #214.

	When creating large type sizes (exceeding 64 KB), HDF5 complained
and refused to do so. The HDF5 team has logged the issue as a bug,
but meanwhile it has been implemented a workaround in PyTables that
allows to create such large datatypes for situations that does not
require defaults other than zero. Addresses #211.

	In order to be consistent with how are stored the other data types,
Unicode attributes are retrieved now as NumPy scalars instead of
Python Unicode strings or NumPy arrays. For the moment, I’ve fixed
this through pickling the Unicode strings. In the future, when HDF5
1.8.x series would be a requirement, that should be done via a HDF5
native Unicode type. Closes #213.

Enjoy data!

The PyTables Team

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Release notes for PyTables Pro 2.0 series

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Release Notes

Release notes for PyTables Pro 2.0 series

	Author:	Francesc Alted i Abad

	Contact:	faltet@pytables.com

	Author:	Ivan Vilata i Balaguer

	Contact:	ivan@selidor.net

Changes from 2.0.3 to 2.0.4

	Selections in tables works now in threaded environments. The problem was in
the Numexpr package – the solution has been reported to the upstream
authors too. Fixes #164.

	PyTables had problems importing native HDF5 files with gaps in nested
compound types. This has been solved. Fixes #173.

	In order to prevent a bug existing in HDF5 1.6 series, the
EArray.truncate() method refused to accept a 0 as parameter
(i.e. truncate an existing EArray to have zero rows did not work). As this
has been fixed in the recent HDF5 1.8 series, this limitation has been
removed (but only if the user has one of these installed). Fixes #171.

	Small fixes for allowing the test suite to pass when using the new NumPy
1.1. However, it remains a small issue with the way the new NumPy
represents complex numbers. I’m not fixing that in the PyTables suite, as
there are chances that this can be fixed in NumPy itself (see ticket #841).

Changes from 2.0.2.1 to 2.0.3

	Replaced the algorithm for computing chunksizes by another that is
more general and useful for a larger range of expected dataset
sizes. The outcome of the new calculation is the same than before
for dataset sizes <= 100 GB. For datasets between 100 GB <= size <
10 TB, larger values are returned. For sizes >= 10 TB a maximum
value of 1 MB is always returned.

	Added support for the latest 1.8.0 version of the HDF5 library.
Fixes ticket #127.

	PyTables compiles now against latest versions of Pyrex (0.9.6.4). For the
first time, the extensions do compile without warnings! Fixes #159.

	Numexpr module has been put in sync with the version in SciPy sandbox.

	Added a couple of warnings in User’s Guide so as to tell the user that it is
not safe to use methods that can change the number of rows of a table in the
middle of a row iterator. Fixes #153.

	Fixed a problem when updating multidimensional cells using the
Row.update() method in the middle of table iterators . Fixes #149.

	Fixed a problem when using 64-bit indexes in 32-bit platforms.
Solves ticket #148.

	Table.indexFilters is working now as documented. However, as per ticket
#155, its use is now deprecated (will be removed in 2.1). Fixes #155.

Changes from 2.0.2 to 2.0.2.1

	Optimization added for avoid to unnecessarily update index columns
that have not been modified in table update operations. Fixes #139.

Changes from 2.0.1 to 2.0.2

	Fixed a critical bug that returned wrong results when doing repetitive
queries affecting the last row part of indices. Fixes #60 of the private
Trac of Carabos.

	Added __enter__() and __exit__() methods to File; fixes #113.
With this, and if using Python 2.5 you can do things like:

	with tables.openFile(“test.h5”) as h5file:

	...

	Carefully preserve type when converting NumPy scalar to numarray; fixes
#125.

	Fixed a nasty bug that appeared when moving or renaming groups due to a bad
interaction between Group._g_updateChildrenLocation() and the LRU cache.
Solves #126.

	Return 0 when no rows are given to Table.modifyRows(); fixes #128.

	Added an informative message when the nctoh5 utility is run without the
NetCDF interface of ScientificPython bening installed.

	Now, a default representation of closed nodes is provided; fixes #129.

Changes from 2.0 to 2.0.1

	The coords argument of Table.readCoords() was not checked
for contiguousness, raising fatal errors when it was discontiguous.
This has been fixed.

	There is an inconsistency in the way used to specify the atom shape
in Atom constructors. When the shape is specified as
shape=() it means a scalar atom and when it is specified as
shape=N it means an atom with shape=(N,). But when the
shape is specified as shape=1 (i.e. in the default case) then a
scalar atom is obtained instead of an atom with shape=(1,).
This is inconsistent and not the behavior that NumPy exhibits.

Changing this will require a migration path which includes
deprecating the old behaviour if we want to make the change happen
before a new major version. The proposed path is:

	In PyTables 2.0.1, we are changing the default value of the
shape argument to (), and issue a DeprecationWarning
when someone uses shape=1 stating that, for the time being,
it is equivalent to (), but in near future versions it will
become equivalent to (1,), and recommending the user to pass
shape=() if a scalar is desired.

	In PyTables 2.1, we will remove the previous warning and take
shape=N to mean shape=(N,) for any value of N.

See ticket #96 for more info.

	The info about the chunkshape attribute of a leaf is now printed
in the __repr__() of chunked leaves (all except Array).

	After some scrupulous benchmarking job, the size of the I/O buffer
for Table objects has been reduced to the minimum that allows
maximum performance. This represents more than 10x of reduction in
size for that buffer, which will benefit those programs dealing with
many tables simultaneously (#109).

	In the ptrepack utility, when --complevel and --shuffle
were specified at the same time, the ‘shuffle’ filter was always set
to ‘off’. This has been fixed (#104).

	An ugly bug related with the integrated Numexpr not being aware of
all the variations of data arrangements in recarray objects has been
fixed (#103). We should stress that the bug only affected the
Numexpr version integrated in PyTables, and not the original one.

	When passing a record array to a table at creation time, its real
length is now used instead of the default value for
expectedrows. This allows for better performance (#97).

	Added some workarounds so that NumPy scalars can be successfully
converted to numarray objects. Fixes #98.

	PyTables is now able to access table rows beyond 2**31 in 32-bit
Python. The problem was a limitation of xrange and we have
replaced it by a new lrange class written in Pyrex. Moreover,
lrange has been made publicly accessible as a safe 64-bit
replacement for xrange for 32-bit platforms users. Fixes #99.

	If a group and a table are created in a function, and the table is
accessed through the group, the table can be flushed now. Fixes
#94.

	It is now possible to directly assign a field in a nested record of
a table using the natural naming notation (#93).

Changes from 2.0rc2 to 2.0

	Added support for recognizing native HDF5 files with datasets compressed
with szip compressor.

	Fixed a problem when asking for the string representation (str()) of closed
files. Fixes ticket #79.

	Do not take LZO as available when its initialisation fails.

	Fixed a glitch in ptrepack utility. When the user wants a copy of a group,
and a group is to be created in destination, the attributes of the
original group are copied. If it is not to be created, the attributes
will not be copied. I think this should be what the user would expect most
of the times.

	Fixed the check for creating intermediate groups in ptrepack utility.
Solves ticket #83.

	Before, when reading a dataset with an unknown CLASS id, a warning was
issued and the dataset mapped to UnImplemented. This closed the door to
have the opportunity to try to recognize the dataset and map it to a
supported CLASS. Now, when a CLASS attribute is not recognized, an attempt
to recognize its associated dataset is made. If it is recognized, the
matching class is associated with the dataset. If it is not recognized, then
a warning is issued and the dataset becomes mapped to UnImplemented.

	Always pass verbose and heavy values in the common test module to test().
Fixes ticket #85.

	Now, the verbose and --heavy flag passed to test_all.py are honored.

	All the DLL’s of dependencies are included now in Windows binaries. This
should allow for better portability of the binaries.

	Fixed the description of Node._v_objectID that was misleading.

Changes from 2.0rc1 to 2.0rc2

	The “Optimization tips” chapter of the User’s Guide has been completely
updated to adapt to PyTables 2.0 series. In particular, new benchmarks on
the much improved indexed queries have been included; you will see that
PyTables indexing is competitive (and sometimes much faster) than that of
traditional relational databases. With this, the manual should be fairly
finished for 2.0 final release.

	Large refactoring done on the Row class. The most important change is
that Table.row is now a single object. This allows to reuse the same
Row instance even after Table.flush() calls, which can be convenient
in many situations.

	I/O buffers unified in the Row class. That allows for bigger savings in
memory space whenever the Row extension is used.

	Improved speed (up to a 70%) with unaligned column operations (a quite
common scenario when dealing with Table objects) through the integrated
Numexpr. In-kernel searches take advantage of this optimization.

	Added VLUnicodeAtom for storing variable-length Unicode strings in
VLArray objects regardless of encoding. Closes ticket #51.

	Added support for time datatypes to be portable between big-endian and
low-endian architectures. This feature is not currently supported natively
by the HDF5 library, so the support for such conversion has been added in
PyTables itself. Fixes #72.

	Added slice arguments to Table.readWhere() and Table.getWhereList().
Although API changes are frozen, this may still be seen as an inconsistency
with other query methods. The patch is backwards-compatible anyway.

	Added missing overwrite argument to File.renameNode() and
Node._f_rename(). Fixes ticket #66.

	Calling tables.test() no longer exits the interpreter session. Fixes
ticket #67.

	Fix comparing strings where one is a prefix of the other in integrated
Numexpr. Fixes ticket #76.

	Added a check for avoiding an ugly HDF5 message when copying a file over
itself (for both copyFile() and File.copyFile()). Fixes ticket #73.

	Corrected the appendix E, were it was said that PyTables doesn’t support
compounds of compounds (it does since version 1.2!).

Changes from 2.0b2 to 2.0rc1

	The lastrow argument of Table.flushRowsToIndex() is no longer
public. It was not documented, anyway. Fixes ticket #43.

	Added a memlevel argument to Cols.createIndex() which allows the
user to control the amount of memory required for creating an index.

	Added blocksizes and opts arguments to Cols.createIndex(), which
allow the user to control the sizes of index datasets, and to specify
different optimization levels for each index dataset, respectively. These
are very low-level options meant only for experienced users. Normal users
should stick to the higher-level memlevel and optlevel.

	Query tests have been tuned to exhaustively check the new parametrization of
indexes.

	A new algorithm has been implemented that better reduces the entropy of
indexes.

	The API Reference section of the User’s Manual (and the matching docstrings)
has been completely reviewed, expanded and corrected. This process has
unveiled some errors and inconsistencies which have also been fixed.

	Fixed VLArray.__getitem__() to behave as expected in Python when using
slices, instead of following the semantics of PyTables’ read() methods
(e.g. reading just one element when no stop is provided). Fixes ticket #50.

	Removed implicit UTF-8 encoding from VLArray data using vlstring
atoms. Now a variable-length string is stored as is, which lets users use
any encoding of their choice, or none of them. A vlunicode atom will
probably be added to the next release so as to fix ticket #51.

	Allow non-sequence objects to be passed to VLArray.append() when using
an object atom. This was already possible in 1.x but stopped working
when the old append syntax was dropped in 2.0. Fixes ticket #63.

	Changed Cols.__len__() to return the number of rows of the table or
nested column (instead of the number of fields), like its counterparts in
Table and Column.

	Python scalars cached in AttributeSet instances are now kept as NumPy
objects instead of Python ones, because they do become NumPy objects when
retrieved from disk. Fixes ticket #59.

	Avoid HDF5 error when appending an empty array to a Table (ticket #57)
or EArray (ticket #49) dataset.

	Fix wrong implementation of the top-level table.description._v_dflts
map, which was also including the pathnames of columns inside nested
columns. Fixes ticket #45.

	Optimized the access to unaligned arrays in Numexpr between a 30% and a 70%.

	Fixed a die-hard bug that caused the loading of groups while closing a file.
This only showed with certain usage patterns of the LRU cache (e.g. the one
caused by ManyNodesTestCase in test_indexes.py under Pro).

	Avoid copious warnings about unused functions and variables when compiling
Numexpr.

	Several fixes to Numexpr expressions with all constant values. Fixed
tickets #53, #54, #55, #58. Reported bugs to mainstream developers.

	Solved an issue when trying to open one of the included test files in append
mode on a system-wide installation by a normal user with no write privileges
on it. The file isn’t being modified anyway, so the test is skipped then.

	Added a new benchmark to compare the I/O speed of Array and EArray
objects with that of cPickle.

	The old Row.__call__() is no longer available as a public method. It
was not documented, anyway. Fixes ticket #46.

	Cols._f_close() is no longer public. Fixes ticket #47.

	Attributes._f_close() is no longer public. Fixes ticket #52.

	The undocumented Description.classdict attribute has been completely
removed. Fixes ticket #44.

Changes from 2.0b1 to 2.0b2

	A very exhaustive overhauling of the User’s Manual is in process. The
chapters 1 (Introduction), 2 (Installation), 3 (Tutorials) have been
completed (and hopefully, the lines of code are easier to copy&paste now),
while chapter 4 (API Reference) has been done up to (and including) the
Table class. During this tedious (but critical in a library) overhauling
work, we have tried hard to synchronize the text in the User’s Guide with
that which appears on the docstrings.

	Removed the recursive argument in Group._f_walkNodes(). Using it
with a false value was redundant with Group._f_iterNodes(). Fixes
ticket #42.

	Removed the coords argument from Table.read(). It was undocumented
and redundant with Table.readCoordinates(). Fixes ticket #41.

	Fixed the signature of Group.__iter__() (by removing its parameters).

	Added new Table.coldescrs and Table.description._v_itemsize
attributes.

	Added a couple of new attributes for leaves:
	nrowsinbuf: the number of rows that fit in the internal buffers.

	chunkshape: the chunk size for chunked datasets.

	Fixed setuptools so that making an egg out of the PyTables 2 package is
possible now.

	Added a new tables.restrict_flavors() function allowing to restrict
available flavors to a given set. This can be useful e.g. if you want to
force PyTables to get NumPy data out of an old, numarray-flavored
PyTables file even if the numarray package is installed.

	Fixed a bug which caused filters of unavailable compression libraries to be
loaded as using the default Zlib library, after issuing a warning. Added a
new FiltersWarning and a Filters.copy().

Changes from 1.4.x to 2.0b1

API additions

	Column.createIndex() has received a couple of new parameters:
optlevel and filters. The first one sets the desired quality level
of the index, while the second one allows the user to specify the filters
for the index.

	Table.indexprops has been split into Table.indexFilters and
Table.autoIndex. The later groups the functionality of the old auto
and reindex.

	The new Table.colpathnames is a sequence which contains the full
pathnames of all bottom-level columns in a table. This can be used to walk
all Column objects in a table when used with Table.colinstances.

	The new Table.colinstances dictionary maps column pathnames to their
associated Column or Cols object for simple or nested columns,
respectively. This is similar to Table.cols._f_col(), but faster.

	Row has received a new Row.fetch_all_fields() method in order to
return all the fields in the current row. This returns a NumPy void scalar
for each call.

	New tables.test(verbose=False, heavy=False) high level function for
interactively running the complete test suite from the Python console.

	Added a tables.print_versions() for easily getting the versions for all
the software on which PyTables relies on.

Backward-incompatible changes

	You can no longer mark a column for indexing in a Col declaration. The
only way of creating an index for a column is to invoke the
createIndex() method of the proper column object after the table has
been created.

	Now the Table.colnames attribute is just a list of the names of
top-level columns in a table. You can still get something similar to the
old structure by using Table.description._v_nestedNames. See also the
new Table.colpathnames attribute.

	The File.objects, File.leaves and File.groups dictionaries have
been removed. If you still need this functionality, please use the
File.getNode() and File.walkNodes() instead.

	Table.removeIndex() is no longer available; to remove an index on a
column, one must use the removeIndex() method of the associated
Column instance.

	Column.dirty is no longer available. If you want to check
column index dirtiness, use Column.index.dirty.

	complib and complevel parameters have been removed from
File.createTable(), File.createEArray(), File.createCArray() and
File.createVLArray(). They were already deprecated in PyTables 1.x.

	The shape and atom parameters have been swapped in
File.createCArray(). This has been done to be consistent with
Atom() definitions (i.e. type comes before and shape after).

Deprecated features

	Node._v_rootgroup has been removed. Please use node._v_file.root
instead.

	The Node._f_isOpen() and Leaf.isOpen() methods have been removed.
Please use the Node._v_isopen attribute instead (it is much faster).

	The File.getAttrNode(), File.setAttrNode() and
File.delAttrNode() methods have been removed. Please use
File.getNodeAttr(), File.setNodeAttr() and File.delNodeAttr()
instead.

	File.copyAttrs() has been removed. Please use File.copyNodeAttrs()
instead.

	The table[colname] idiom is no longer supported. You can use
table.cols._f_col(column) for doing the same.

API refinements

	File.createEArray() received a new shape parameter. This allows to
not have to use the shape of the atom so as to set the shape of the
underlying dataset on disk.

	All the leaf constructors have received a new chunkshape parameter that
allows specifying the chunk sizes of datasets on disk.

	All File.create*() factories for Leaf nodes have received a new
byteorder parameter that allows the user to specify the byteorder in
which data will be written to disk (data in memory is now always handled in
native order).

Enjoy data!

The PyTables Team

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Project pointers

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

Project pointers

	Project Home Page [http://www.pytables.org]

	GitHub Project Page [https://github.com/PyTables]

	Online HTML Documentation [http://pytables.github.io]

	Download area [http://sourceforge.net/projects/pytables/files/pytables]

	Git Repository browser [https://github.com/PyTables/PyTables]

	Users Mailing List [https://groups.google.com/group/pytables-users]

	Announce Mailing List [https://lists.sourceforge.net/lists/listinfo/pytables-announce]

	Developers Mailing List [https://groups.google.com/group/pytables-dev]

	Continuous Integration:
	OME [http://hudson.openmicroscopy.org.uk/job/PyTables] (master branch)

	Travis-CI [https://travis-ci.org/PyTables/PyTables] (all branches)

	Project page on PyPi [https://pypi.python.org/pypi/tables]

	Project Page on SourceForge.net [http://sourceforge.net/projects/pytables]
(needs update)

	Project page on Launchpad [https://launchpad.net/pytables]
(going to be closed)

	Development version of the
HTML documentation [http://pytables.github.io/latest/index.html]

	Old trac site [http://www.pytables.org/trac-bck]

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 PyTables Development

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

PyTables Development

If you want to follow the development of PyTables and take part in it,
you may have a look at the PyTables project pages on
GitHub [https://github.com].

The source code for PyTables may be found at the GitHub project site [https://github.com/PyTables].
You can get a copy of the latest version of the source code (under
development) from the master branch of the project repository using git:

git clone git@github.com:PyTables/PyTables.git

Also, be sure to subscribe to the Users’ Mailing List [https://groups.google.com/group/pytables-users] and/or the
Developers’ Mailing List [https://groups.google.com/group/pytables-dev].

Other resources for developers:

	GitHub project site [https://github.com/PyTables]

	Library Reference

	Git Repository browser [https://github.com/PyTables/PyTables]

	Issue tracker [https://github.com/PyTables/PyTables/issues]

	Developers wiki [https://github.com/PyTables/PyTables/wiki]

	Users’ Mailing List [https://groups.google.com/group/pytables-users]

	Developers’ Mailing List [https://groups.google.com/group/pytables-dev]

	Continuous Integration:
	master [http://hudson.openmicroscopy.org.uk/job/PyTables] branch at
OME [http://www.openmicroscopy.org]

	all branches [https://travis-ci.org/PyTables/PyTables] on Travis-CI [https://travis-ci.org]

	Old trac site [http://www.pytables.org/trac-bck]

	Dev IRC Meetings

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Dev IRC Meetings

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyTables 3.3.0 documentation

 	PyTables Development

Dev IRC Meetings

2011

	2011/pytables.2011-08-29-20.25 [http://pytables.github.io/irc/2011/pytables.2011-08-29-20.25.html]

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 PyTables Governance Team

 Navigation

 	
 index

 	
 previous |

 	PyTables 3.3.0 documentation

PyTables Governance Team

The PyTables team includes:

	Francesc Alted

	Ivan Vilata

	Scott Prater

	Vicent Mas

	Tom Hedley

	Antonio Valentino [https://github.com/avalentino]

	Jeffrey Whitaker

	Josh Moore [https://github.com/joshmoore]

	Anthony Scopatz [http://www.scopatz.com/]

	Andrea Bedini [https://github.com/andreabedini]

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

 Index

 Navigation

 	
 index

 	PyTables 3.3.0 documentation

Index

 _
 | A
 | B
 | E
 | H
 | L
 | N
 | P
 | S
 | U

_

 	

 	_v_pos (tables.Col attribute)

A

 	

 	atom (tables.Array attribute)

B

 	

 	BLOSC_DIR, [1], [2]

 	

 	BZIP2_DIR, [1]

E

 	

 	
 environment variable

 	

 	BLOSC_DIR, [1], [2]

 	BZIP2_DIR, [1]

 	HDF5_DIR, [1]

 	LD_LIBRARY_PATH

 	LIBS

 	LZO_DIR, [1]

 	PATH, [1]

 	PYTHONPATH, [1], [2]

 	USE-PKGCONFIG

H

 	

 	HDF5_DIR, [1]

L

 	

 	LD_LIBRARY_PATH

 	LIBS

 	

 	LZO_DIR, [1]

N

 	

 	nelements (tables.tables.index.Index attribute)

 	

 	nrow (tables.Array attribute)

P

 	

 	PATH, [1]

 	

 	PYTHONPATH, [1], [2]

S

 	

 	size_in_memory (tables.Leaf attribute)

U

 	

 	USE-PKGCONFIG

 Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

usersguide/usersguide.html

 Navigation

 		
 index

 		PyTables 3.3.0 documentation »

PyTables User’s Guide

		Authors:		Francesc Alted, Ivan Vilata, Scott Prater, Vicent Mas, Tom Hedley,
Antonio Valentino, Jeffrey Whitaker, Anthony Scopatz, Josh Moore

		Copyright:		© 2002, 2003, 2004 - Francesc Alted

© 2005, 2006, 2007 - Cárabos Coop. V.

© 2008, 2009, 2010 - Francesc Alted

© 2011-2015 - PyTables maintainers

		Date:		January 20, 2017

		Version:		3.3.0

		Home Page:		http://www.pytables.org

Copyright Notice and Statement for PyTables User’s Guide

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

a. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

b. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.

c. Neither the name of Francesc Alted nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The PyTables Core Library

		Introduction

		Installation

		Tutorials

		Library Reference

		Optimization tips

Complementary modules

		filenode - simulating a filesystem with PyTables

Appendixes

		Supported data types in PyTables

		Condition Syntax

		PyTables parameter files

		Utilities

		PyTables File Format

		Bibliography

 © Copyright 2011-2014, PyTables maintainers.
 Created using Sphinx 1.3.5.

_images/compressed-select-nocache-shuffle-only.png
MRows/s

Selecting with small (16 bytes) record size (file not in cache)

= No compression
= 2lib IVI1 (Shuffle)
= Iz0 IvI1 (Shuffle)
= bzip2 Ivi1 (Shuffle)

e 107 i0° 107 107 10
Number of rows.

_images/read-medium-psyco-nopsyco-comparison.png
Speed (Krow/s)

Selecting with medium record size (56 bytes)

1200

1000

No Psyco

10000

100000 1e+06
Number of rows

1e+07

_images/compressed-select-nocache.png
Selecting with small (16 bytes) record size (file not in cache)

— No compression
3.5)| == zlib Vi1

— Iz0 IVI1

— bzip2 W1

045 107 i0° 107 107 10
Number of rows.

_images/tutorial1-1-tableview.png
ViTables 2.0

File Node Query Windows Tools Help

@0l @ B4 hiix FY &8

Tree of databases

readout Readout example

& % tutoriall.h5 ADCcount |TDCcount |energy

© [columns

pressure
© [detector
& readout

[Query results

0.0

1.0
256.0
6561.0
65536.0

fpressure,...

1/ Particle:
2| Particle:
3| 'Particle:

5
&
7

Al TIgNs reservea.
Creating the Query results file...
ok!

E

/home/faltet/PyTables/pytables/trunk/examples/tutorial1.h5->/columns/name

_images/compressed-select-cache-zlib.png
MRows/s

Selecting with small (16 bytes) record size (file in cache)

= No compression
1al| = zlib i1

— zlib Vi3

— 2lib IVI6
12f| = Zib Ivig

10|

9o 107 i0° 107 107 10
Number of rows.

_images/Q8-1g-idx-sorted.png
Query time for complex query and 1 Grow (indexed)

Unsorted versus sorted tables

10*

1Tt

PyTables 2.1 CSl Izo1 unsorted RAIDO
PyTables 2.1 CSl Izo1 unsorted SSD
PyTables 2.1 CSlI Izol sorted RAIDO
PyTables 2.1 CSI Izo1 sorted SSD

10 10° 10° 10* 10° 10° 107
Number of hits

_images/filesizes-chunksize-15GB.png
Size (MB)

18000

File size

16000

14000

12000

10000

8000

6000

4000

2000

Ittt

nocompr
zlib5
1zo5

blosc5

Automatic
chunksize

10°

10*

10°
Chunksize (bytes)

10° 107

_images/Q7-10m-noidx.png
Query time for complex query and 10 Mrow (not indexed)

10?

®—& PyTables 2.1 inkernel nocompr
®—e PyTables 2.1 inkernel zlibl
¥—¥ PyTables 2.1 inkernel Izol
A—A PyTables 2.1 regular nocompr
=== PostgreSQL 8.3.1

10% 0 1 2 3 4 S 6
10 10 10 10 10 10 10
Number of hits

107

_images/compressed-recordsize-zlib.png
Bytes/row

Disk space taken by a record (original record size: 16 bytes)

= No compression
= zlib IvI1
= Zlib VI3

25 = Zlib Ivl6
= 2lib Ivi9

20

15|

10f

iF 107 107 10 0 10

Number of rows.

_images/tutorial2-tableview.png
ViTables 2.0

File Node Query Windows Tools Help
JEQ0EE =4 1hx TV W

Tree of databases P e2 P

© % tutorial2.h5 longi name pressure |temperatur,

© 4 Events g icle:
& TEvent1 10 Particle: ... [[0.,0.,.. [[0,0,..

& TEvent2 9 ‘Particle: ... S I SR B

| TEvent3 2; pressure I o 044, .

© {3 Particles O)
@ TParticle3 {0 0., 3, [[9.0. .
e 100 120 4.0 [[0. 4.,. ([16,16..

& TParticlel . xe. e
Query results 2/6.0 80 10.0

ADCcount |TDCcount |name ycoord
0 0 ‘Event: ... 0. 0.0

‘Event: ... 1. 1.0
‘Event: ... 4. 16.0
‘Event: ... 9. 81.0

‘Event:

[T

Al TIgNs reservea.
Creating the Query results file...
ok!

/home/faltet/PyTables/pytables/trunk/examples/tutorial2. /Particles/TParticle2|

_images/tutorial1-2-tableview.png
ViTables 2.0
File Node Query Windows Tools Help

@0l @ B4 hiix FY &8

Tree of databases readout Readout example

& % tutoriall.h5 ADCcount |TDCcount |energy
(& columns 50

88 name :

pressure 4.0

o [detector 40

reado

" & Query results

6561.0
6.0

Eipressure .. name Na...

1|10 1| Particle:
2/2.1000000000000001 2| Particle:
3/2.0 3| 'Particle:

Al TIgNs reservea.
Creating the Query results file...
ok!

/home/faltet/PyTables/pytables/trunk/examples/tutoriall. -/detector/readout|

_images/compressed-writing.png
Writing with small (16 bytes) record size

3.0,

= No compression
—2lib IvI1
25| == lzo Vi1
— bzip2 Ivil

1.0

0.5]

45 107 i0° 107 107 10
Number of rows.

_images/Q8-1g-idx-SSD.png
Time (s)

Query time for complex query and 1 Grow (indexed)
Solid State Disk versus RAID-0 of SATA disks

10°

10"

PyTables 2.1 CSI nocompr SSD

PyTables 2.1 CSl Izo1l RAIDO
PyTables 2.1 inkernel Izol

—a

®—e PyTables 2.1 CSl Izol SSD
A and

3

10* 10° 10° 107
Number of hits

10°

_images/compressed-writing-shuffle.png
3.0,

Writing with small (16 bytes) record size

2.5]

1.0

0.5]

0.5

= No compression
— zlib IvI1

= zlib IVI1 (Shuffle)
= Iz0 IvI1

= Iz0 IvI1 (Shuffle)
= bzip2 Ivi1
= bzip2 Ivi1 (Shuffle)

10 i0° 1i0°

Number of rows

107 10

_images/random-chunksize-15GB.png
Time (ms)

Random read mean time per element

6

=8 nocompr

e z|ib5
5f| ¥ 1zo5

44 blosc5

Automatic

4 chunksize
3 L»

10° 10*

10° 10° 107
Chunksize (bytes)

_images/Q8-1g-idx-optlevels.png
Time (s)

Query time for complex query and 1 Grow (indexed)

PyTables 2.1 09 full 1zol
PyTables 2.1 06 medium Izol
PyTables 2.1 06 light Izo1
PyTables 2.1 O3 ultralight Izol
PostgreSQL 8.3.1

PyTables 2.1 inkernel I1zol
PostgreSQL 8.3.1 not indexed

10* 10° 10° 107 10°
Number of hits

_images/compressed-recordsize.png
Bytes/row

Disk space taken by a record (original record size: 16 bytes)

= No compression
—Zlib IvI1
— izo Vi1

25, == bzip2 Ivi1

20

15]

10y

iF o 107 i 7 108

Number of rows.

_images/compressed-writing-zlib.png
Writing with small (16 bytes) record size

No compression
Ivi1
2lib Ivi3
2lib Ivie
2lib Ivi9

045 107 i0° 1i0° 107 10
Number of rows

_images/compressed-select-cache.png
MRows/s

Selecting with small (16 bytes) record size (file in cache)

14

12

10|

= No compression
—Zlib IvI1

— Izo Vi1

= bzip2 Ivi1

o 107

i0° 107 107 10
Number of rows.

_images/tutorial1-general.png
Table properties *
eneral | System Attributes | User ||
(Database

Name: readout
Path: /detector/readout
Type: table

 Dataspace
Dimensions: 1
Shape: (10,)
Data type: record

Compression: None

Sield name| Type | Shape
ADCcount | uint16

TDCcount uint8

energy float64

grid i int32

grid_j int32

_images/write-medium-psyco-nopsyco-comparison.png
Speed (Krowls)

Writing with medium record size (56 bytes)

250

T

No Psyco *

.wﬂ..‘.mmulPsyco "

10000

100000
Number of rows

1e+06 1e+07

_images/seq-chunksize-15GB.png
Throughput (MB/s)

Sequential read speed
1400

nocompr
zlib5
1zo5
blosc5

1200}

1Ll

1000
Automatic
chunksize

800

600

400]

200

10° 10* 10° 10° 107
Chunksize (bytes)

_images/create-chunksize-15GB.png
50

Creation write speed

45

40

35

Throughput (MB/s)
w
]

Automatic
chunksize

20 =8 nocompr
e zlib5
15} ¥—¥ Iz05
4&—A blosc5
10
10° 10* 10° 10°

Chunksize (bytes)

107

_images/compressed-select-cache-shuffle.png
MRows/s

Selecting with small (16 bytes) record size (file in cache)

= No compression
14| m—lib Vi1

= zib IvI1 (Shuffle)
= Izo IvI1

12
= Izo0 Vi1 (Shuffle)
== bzip2 Wil

10F| == bzip2 IvI1 (Shuffle)

8

9o 107 i0° 1i0° 107 10
Number of rows

_images/indexes-sizes2.png
Disk Size (MB)

Sizes for index of a 1 Grow column with different optimizations
(PyTables Pro 2.1 vs PostgreSQL 8.3.1)

10)

I Optlevel 0

Optlevel 3

o Bl Optlevel 6

[Optlevel 9
o 15x lighter
4 \ \

1.49 MB i

2 k
0 Original UltraLight Light Medium Full PostgreSQL

column

_images/NumFocusSponsoredStamp.png
A Fiscally Sponsored Project of

NUMFOCUS

OPEN CODE = BETTER SCIENCE

_images/create-index-time-int32-float64.png
Time to index a column with 1 Grow for different optimizations

(PyTables Pro 2.1 vs PostgreSQL 8.3.1)
6000
N Int32
I Float64
5000}
25x faster
4000 21x faster
g 3000}
£
2000
1000
0 -
ultralight/O3 light/O6 medium/06 full/O9

PostgreSQL
(csh

_images/objecttree-h5.png
ViTables 2.0
File Node Query Windows Tools Help

@0l @ B4 hiix FY &8

Tr